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Abstract

Large-scale optimization problems arising from the big data era pose significant challenges, as
traditional algorithms become prohibitively expensive due to their unfavorable scaling with problem
size. While first-order methods like gradient descent offer improved scalability, they often struggle
with ill-conditioned problems, leading to slow convergence. This thesis addresses this challenge by
developing scalable preconditioning techniques that improve the convergence of first-order methods
on ill-conditioned problems without sacrificing computational efficiency. We introduce three novel
algorithms: Nystrém Preconditioned Conjugate Gradients (Nystrom PCQG) for solving large-scale
symmetric positive definite linear systems, NysADMM for composite optimization problems, and
SketchySGD, a stochastic second-order method for machine learning tasks. These algorithms
leverage randomized numerical linear algebra to efficiently construct preconditioners from low-rank
approximations, resulting in methods that are more robust to problem conditioning than existing
first-order algorithms. Theoretical analyses and extensive numerical experiments demonstrate the
efficacy of these approaches across a range of applications, including ridge regression, kernel ridge
regression, and logistic regression, often outperforming state-of-the-art methods. This work bridges
the gap between scalability and fast convergence, offering promising directions for tackling large-scale

optimization problems in the big data era.
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Chapter 1

Introduction

1.1 Motivation

The “Big Data” era poses major challenges for optimization, as it leads to optimization problems
of unprecedented size. Even seemingly simple machine learning tasks, such as predicting user click
behavior or detecting malicious URLs, can result in optimization problems with decision variables
containing millions of dimensions. Traditional optimization algorithms, including Newton’s method
for unconstrained problems and interior point methods for constrained problems, typically scale
cubically (or worse) with the size of the decision variable. Thus, traditional algorithms become
prohibitively expensive on large high-dimensional optimization problems.

In the wake of these scalability challenges, first-order algorithms such as gradient descent have
gained popularity due to their favorable per-iteration cost, which scales at most linearly with problem
size, and their capacity to leverage the massive parallelism available in modern computing hardware.
While first-order methods elegantly address the scalability challenges of big data, they introduce a
new problem arising from their convergence properties. Namely, the convergence rate of first-order
methods is governed by the problem’s condition number [122], which is determined by the underlying
data. For matrices, the condition number is defined as the ratio of its largest to smallest singular
value. In the case of smooth strongly convex functions, the condition number is defined as the
worst-case condition number of the Hessian matrix across the domain.

The condition number significantly impacts the convergence speed of first-order methods. When
the condition number is modest, first-order methods can achieve low to moderate accuracy solutions in
reasonable time, which suffices for many large-scale applications, particularly in machine learning [22].
However, a large condition number dramatically slows convergence, making it challenging to reach
even modest accuracy.

The sensitivity of first-order algorithms to ill-conditioning is particularly problematic in the

context of big data, as large-scale data matrices and Hessians are often ill-conditioned. In particular,
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they typically exhibit approximate low-rank structure, where a small proportion of large singular
values dominate the rest, leading to large condition numbers. Consequently, first-order methods can
struggle to efficiently provide acceptable solutions in many real-world scenarios.

While the preceding discussion presents a pessimistic outlook, suggesting that slow convergence is
the inevitable price for scalability, this dissertation demonstrates that this trade-off is not fundamental.
We develop scalable algorithms that enjoy better practical performance on ill-conditioned problems
by leveraging preconditioning, which transforms the problem to a new geometry where the condition
number is closer to unity.

Classic algorithms like Newton’s method and BFGS employ preconditioning, enabling them to
achieve fast local convergence independent of the condition number. However, the various costs
associated with the preconditioner are precisely why these methods fail to scale. The key insight we
leverage in this thesis is that the source of ill-conditioning in data matrices and Hessians arising in
large-scale optimization primarily comes from dominant outlying eigenvalues. Therefore, to improve
conditioning, we only need to reduce these dominant eigenvalues.

In this thesis, we apply randomized numerical linear algebra (RandNLA) to efficiently construct
preconditioners from randomized low-rank approximations that provably improve problem condi-
tioning. By integrating this technique with existing ideas from optimization, we obtain new scalable
algorithms that are much more robust to problem conditioning than existing first-order algorithms
in the literature. The approach developed here, helps bridge the gap between scalability and fast
convergence, offering a useful set of tools for practitioners, and provides a promising direction for

tackling large-scale optimization problems in the big data era.

1.2 Contributions and organization

The core contributions of this thesis are three new algorithms: (i) Nystrom Preconditioned Conjugate
Gradients (SIMAX ’23) (ii) NysADMM (ICML ’22), and (iii) SketchySGD (SIMODS ’24), which
were developed by the author and collaborators in the papers [57,58,181]. Each paper is the subject

of its own chapter. We summarize the content and contributions of each chapter below:

Chapter 2. We develop the randomized Nystrom preconditioner for solving large-scale symmetric
positive definite linear systems via preconditioned conjugate gradients (PCG), leading to the Nystrom
Preconditioned Conjugate Gradients Algorithm (Nystrom PCG) In particular, we introduce the idea
of constructing a preconditioner from a randomized Nystrom approximation of a matrix, which will
prove central to algorithms developed in this thesis. We provide a detailed performance analysis of the
preconditioner, and show that when appropriately constructed, PCG with the randomized Nystrom
preconditioner is guaranteed to converge at a fast linear rate, independent of the condition number.

A systematic principled way of setting hyperparameters is presented, and experiments on large-scale
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ridge and kernel ridge regression tasks shows Nystrom PCG exhibits improved performance relative

to CG and other randomized preconditioning techniques.

Chapter 3. The Alternating Directions Method of Multipliers (ADMM) algorithm is one of
the most effective first-order algorithms for large-scale composite optimization. Unfortunately, at
each iteration ADMM involves solving an expensive subproblem, that is generally ill-conditioned.
Building off of Chapter 2, we apply function linearization to obtain a subproblem that reduces to
solving a large symmetric positive-definite linear system. Nystrom PCG is then applied to solve
this system efficiently. Numerical experiments show that NysADMM can yield 3 — 58 speedups
relative to bespoke benchmark algorithms and solvers like GLMNet [60], LIBSVM [29], SAGA [37],

and Accelerated Proximal Gradient with restarts [127].

Chapter 4. We introduce SketchySGD, a stochastic second-order method that uses randomized
low-rank approximations of the subsampled Hessian to estimate curvature, along with an automated
stepsize. Theoretical analysis shows SketchySGD converges linearly to a small ball around the
minimum with a fixed stepsize, and outperforms SGD on ill-conditioned least-squares problems.
Empirical results on ridge and logistic regression tasks demonstrate that SketchySGD, with default
hyperparameters, matches or exceeds the performance of tuned stochastic gradient methods and
preconditioned conjugate gradient. Notably, SketchySGD solves an ill-conditioned logistic regression
problem with a 840GB data matrix, where competitors fail. SketchySGD’s out-of-the-box performance
and robustness to ill-conditioning distinguishes it from other methods that require careful tuning

and struggle with ill-conditioned problems.

Chapter 5. In this chapter, we summarize the contributions of the thesis and discuss works that
extend the ideas developed here. In particular, we discuss extensions to massive scale kernel ridge
regression and Gaussian processes, variance reduced algorithms for finite-sum minimization, and

extensions of NysADMM to a general convex composite optimization solver.

1.3 Other publications and projects

In addition to the chapters that are the subject of this thesis, I have produced four other publications
during my PhD: [156] (NeurIPS ’21), [142] (ICML ’24, Oral), [56] (JMLR, ’24), [52] (NeurIPS ’24). I
also have six preprints in submission: [42], [41], [59], [141], [159], and [140].



Chapter 2

Randomized Nystrom

Preconditioning

2.1 Motivation
In their elegant 1997 textbook on numerical linear algebra [161], Trefethen and Bau write,

“In ending this book with the subject of preconditioners, we find ourselves at the
philosophical center of the scientific computing of the future... Nothing will be more
central to computational science in the next century than the art of transforming a
problem that appears intractable into another whose solution can be approximated
rapidly. For Krylov subspace matrix iterations, this is preconditioning... we can only

guess where this idea will take us.”

The next century has since arrived, and one of the most fruitful developments in matrix computa-
tions has been the emergence of new algorithms that use randomness in an essential way. This thesis
chapter explores a topic at the nexus of preconditioning and randomized numerical linear algebra.
We will show how to use a randomized matrix approximation algorithm to construct a preconditioner

for an important class of linear systems that arises throughout data analysis and scientific computing.

2.1.1 The preconditioner

Consider the regularized linear system

(A+ pl)x =b where A € R™" is symmetric psd and g > 0. (2.1)
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Here and elsewhere, psd abbreviates the term “positive semidefinite.” This type of linear sys-
tem emerges whenever we solve a regularized least-squares problem. We will design a class of
preconditioners for the problem Equation (2.1).

Throughout this chapter, we assume that we can access the matrix A through matrix—vector
products x — Az, commonly known as matvecs. The algorithms that we develop will economize
on the number of matvecs, and they may not be appropriate in settings where matvecs are very
expensive or there are cheaper ways to interact with the matrix.

For a rank parameter s € N, the randomized Nystrom approximation of A takes the form
Apgs = (AD)(QTAQ)T (AT where Q € R™*® is standard normal. (2.2)

This matrix provides the best psd approximation of A whose range coincides with the range of the
sketch AQ2. The randomness in the construction ensures that Anys is a good approximation to the
original matrix A with high probability [109, Sec. 14].

We can form the Nystrom approximation with sketch size s, using s matvecs with A, plus some
extra arithmetic. See Algorithm 13 for the implementation details.

Given the eigenvalue decomposition Anys = UAUT of the randomized Nystrom approximation,

we construct the Nystrém preconditioner:

p— 1 U+ pD)UT + (I -UUT). (2.3)
As +
In a slight abuse of terminology, we refer to s as the rank of the Nystrom preconditioner. The key
point is that we can solve the linear system Py = c very efficiently, and the action of P~! dramatically
reduces the condition number of the regularized matrix A, = A+ pl.

We propose to use Equation (2.3) in conjunction with the preconditioned conjugate gradient
(PCQG) algorithm. Each iteration of PCG involves a single matvec with A, and a single linear solve
with P. When the preconditioned matrix P~'4,, has a modest condition number, the algorithm
converges to a solution of Equation (2.1) very quickly. See Algorithm 3 for pseudocode for Nystrom
PCG.

The idea of using the randomized Nystrom approximation to construct the preconditioner in
Equation (2.3) was suggested by P.-G. Martinsson in the survey [109, Sec. 17], but it has not
been implemented or analyzed. An earlier (folklore) preconditioner with similar motivation uses
a partial eigendecomposition to form a preconditioner of the form Equation (2.3); for instance,
in [65], this idea is called a “deflating preconditioner”. However, as computing an exact partial
eigendecomposition is prohibitively expensive for large problems, these deflating preconditioners are
rarely used. Randomized numerical linear algebra, such as the randomized Nystrom approximation

used here, provides the key ingredient to make such a preconditioner practical.
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2.1.2 (Guarantees

This chapter contains the first comprehensive study of the preconditioner Equation (2.3), including
theoretical analysis and testing on prototypical problems from data analysis and machine learning.
One of the main contributions is a rigorous method for choosing the rank s to guarantee good
performance, along with an adaptive rank selection procedure that performs well in practice.

A key quantity in our analysis is the effective dimension of the regularized matrix A + pl. That
is,

() =t (A + 1)) = 30 A 24)

where (A + pI)T is the Moore-Penrose pseudoinverse. Our definition differs slightly from the
literature [3,13] which uses (A + )1, the definition we use allows for the effective dimension to be
defined even when i = 0, in which case it equals the rank of A. The effective dimension measures the
degrees of freedom of the problem after regularization. It may be viewed as a (smoothed) count of
the eigenvalues larger than p. Many real-world matrices exhibit strong spectral decay, so for u > 0
the effective dimension is typically much smaller than the nominal dimension n. As we will discuss,
the effective dimension also plays a role in a number of machine learning papers [3,9,13,33,96] that

consider randomized algorithms for solving regularized linear systems.

Remark 2.1.1. Often when the underlying matrix A is clear from context, we shall omit the dependence

upon A in the effective dimension, and simply write dlg.

Our theory tells us the randomized Nystrom preconditioner P is successful when its rank s is

proportional to the effective dimension.

Theorem 2.1.2 (Randomized Nystrom Preconditioner). Let A € S (R) be a psd matriz, and write
A, = A+ pl where the reqularization parameter i > 0. Define the effective dimension dig(A) as
in Equation (2.4). Construct the randomized preconditioner P from Equations (2.2) and (2.3) with
rank parameter s = 2 [1.5d55(A)] + 1. Then the condition number of the preconditioned system
satisfies

E[wo(P~Y24,P7Y?)] < 28. (2.5)

Theorem 2.1.2 is a restatement of Theorem 2.5.1.

Simple probability bounds follow from Equation (2.5) via Markov’s inequality. For example,
P{ro(P~Y24,P71?) <56} > 1/2.

The main consequence of Theorem 2.1.2 is a convergence theorem for PCG with the randomized

Nystrom preconditioner.

Corollary 2.1.3 (Nystrom PCG: Convergence). Construct the preconditioner P as in Theorem 2.1.2,
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and condition on the event {ka(P~'/2A,P~1/2) < 56}. Solve the regqularized linear system Equa-
tion (2.1) using Nystrom PCG, starting with an initial iterate xo = 0. After t iterations, the relative
error 0 satisfies

_lwe = wila,

0 == <2-(0.77)"  where Aw, = b.

[wslla,

The error norm is defined as ||u\|?4u =uT A, u. In particular, t > [3.91og(2/€)] iterations suffice to

achieve relative error €.

Although Theorem 2.1.2 gives an interpretable bound for the rank s of the preconditioner, we
cannot instantiate it without knowledge of the effective dimension. To address this shortcoming, we
have designed adaptive methods for selecting the rank in practice (Section 2.5.4).

Finally, as part of our investigation, we will also develop a detailed understanding of Nystrom
sketch-and-solve, a popular algorithm in the machine learning literature [3,13]. Our analysis highlights

the deficiencies of Nystrom sketch-and-solve relative to Nystrom PCG.

2.1.3 Example: Ridge regression

As a concrete example, we consider the [>-regularized least-squares problem, also known as ridge

regression. This problem takes the form
minimizey g — || Xw — b? + £ o] ? (2.6)
v 2n 2 ’

where X € R"*?% and b € R™ and p > 0. By calculus, the solution to Equation (2.6) also satisfies the

regularized system of linear equations
(XTX +nul)w=X"b. (2.7)

A direct method to solve Equation (2.7) requires O(nd?) flops, which is prohibitive when n and
d are both large. Instead, when n and d are large, iterative algorithms, such as the conjugate
gradient method (CG), become the tools of choice. Unfortunately, the ridge regression linear
system Equation (2.7) is often very ill-conditioned, and CG converges very slowly.

Nystrém PCG can dramatically accelerate the solution of Equation (2.7). As an example, consider
the shuttle-rf dataset (Section 2.6.2). The matrix X has dimension 43,300 x 10,000, while the
preconditioner is based on a Nystrom approximation with rank s = 800. Figure 2.1 shows the
progress of the residual as a function of the iteration count. Nystrom PCG converges to machine

precision in 13 iterations, while CG stalls.
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Figure 2.1: Ridge regression: CG versus Nystrom PCG. For the shuttle-rf data set, Nystrom
PCG converges to machine precision in 13 iterations while CG stalls. See Sections 2.1.3 and 2.6.2.

2.1.4 Comparison to prior randomized preconditioners

Prior proposals for randomized preconditioners [10,114,144] accelerate the solution of highly overde-
termined or underdetermined least-squares problems using the sketch-and-precondition paradigm [109,
Sec. 10]. For n > d, these methods require (d®) computation to factor the preconditioner. In
contrast, the randomized Nystrom preconditioner applies to any symmetric positive-definite linear

system and can be significantly faster for regularized problems. See Section 2.5.2 more details.

2.1.5 Roadmap

Section 2.2 contains an overview of the Nystrom approximation and its key properties. Section 2.3
studies the role of the Nystrom approximation in estimating the inverse of the regularized matrix.
We analyze the Nystrom sketch-and-solve method in Section 2.4, and we give a rigorous performance
bound for this algorithm. Section 2.5 presents a full treatment of Nystrom PCG, including theoretical
results and guidance on numerical implementation. Computational experiments in Section 2.6

demonstrate the power of Nystrom PCG for three different applications involving real data sets.

2.1.6 Notation

We write S, (R) for the linear space of n x n real symmetric matrices, while S;(R) denotes the convex
cone of real psd matrices. The symbol < denotes the Loewner order on S,,(R). That is, A < B if
and only if the eigenvalues of B — A are all nonnegative. The function tr[-] returns the trace of a
square matrix. The map \;(A) returns the jth largest eigenvalue of A; we may omit the matrix if

it is clear. As usual, k3 denotes the Iz condition number. We write || M| for the spectral norm of
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a matrix M. For a psd matrix A, we write ||ul|} = u” Au for the A-norm. Given A € S,,(R) and
1 < s < n, the symbol | A], refers to any best rank-s approximation to A relative to the spectral
norm. For A € S§(R) and p > 0, the regularized matrix is abbreviated A, = A+ ul. For A € S} (R)
and p > 0 the effective dimension of A4, is defined as d";(A) = tr(A(A + ul)). For A € S} (R), the
p-stable rank of A is defined as srp(A4) = A > ispAj- For A € SF(R), we denote the time taken to

compute a matvec with A by Ty, .

2.2 The Nystrom approximation

Let us begin with a review of the Nystrém approximation and the randomized Nystrém approximation.

2.2.1 Definition and basic properties

The Nystrom approximation is a natural way to construct a low-rank psd approximation of a psd
matrix A € ST(R). Let Z € R"** be an arbitrary test matrix. The Nystrom approzimation of A
with respect to the range of X is defined by

AlZ) = (AZ)(ZTAZ) (AZ)T € ST (R). (2.8)

The Nystrom approximation is the best psd approximation of A whose range coincides with the range
of AX. It has a deep relationship with the Schur complement and with Cholesky factorization [109,
Sec. 14].

The Nystrom approximation enjoys several elementary properties that we record in the following

lemma.
Lemma 2.2.1. Let A(Z) € S} (R) be a Nystrom approzimation of the psd matriz A € S}t (R). Then
1. The approzimation A(Z) is psd and has rank at most s.

2. The approzimation A(Z) depends only on range(Z), that is

range(A(Z)) C range(Z).

3. In the Loewner order, A(Z) < A.
4. In particular, the eigenvalues satisfy A;j(A(Z)) < X\j(A) for each 1 < j < n.

The proof of Lemma 2.2.1, Item 3 is not completely obvious. It is a consequence of the fact that

we may express A(Z) = AY2IIAY/2, where TI is an orthogonal projector.
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Algorithm 1 RandNysAppx [102,120, 164]

1: Input: Positive-semidefinite matrix A € S} (R), rank s
2: 0 =randn(n, s) {Gaussian test matrix}

3: Q =qr(Q,0) {Thin QR decomposition}

4: Y = AQ {s matvecs with A}

5: v = eps(norm(Y, ’fro’)) {Compute shift}

6: Y, =Y + vQ {Shift for stability}

7. C = chol(QTY,)

8 B = YV/C

9: [U, %, ~] = svd(B,0) {Thin SVD}

10: A = max{0, %% — vI} {Remove shift, compute eigs}

Output: Nystrom approximation in factored form Anys = UAUT

—_
[

2.2.2 Randomized Nystrom approximation

How should we choose the test matrix Z so that the Nystrom approximation A(Z) provides a
good low-rank model for A? Surprisingly, we can obtain a good approximation simply by drawing
the test matrix at random. See [164] for theoretical justification of this claim.

Let us outline the construction of the randomized Nystrom approximation. Draw a standard
normal test matrix 0 € R"*% where s is the sketch size, and compute the sketch Y = AQ. By
Lemma 2.2.1, the sketch size s is equal to the rank of flnys with probability 1, hence we use these
terms interchangeably. The Nystrom approximation Equation (2.8) is constructed directly from the
test matrix 2 and the sketch Y:

Apys = A(Q) = Y(QTY)TYT, (2.9)

The formula Equation (2.9) is not numerically sound. We refer the reader to Algorithm 13 for a stable
and efficient implementation of the randomized Nystrom approximation [102,120,164]. Conveniently,
Algorithm 13 returns the truncated eigendecomposition /Alnys = UAU T where U € R"** is an
orthonormal matrix whose columns are eigenvectors and AeR>sisa diagonal matrix listing the
eigenvalues, which we often abbreviate as 5\1, ceey As.

The randomized Nystrom approximation described in this section has a key difference from the
Nystrom approximations that have traditionally been used in the machine learning literature [3,13,
66,171]. In machine learning settings, the Nystrom approximation is usually constructed from a
sketch Y that samples random columns from the matrix (i.e., the random test matrix 2 has 1-sparse
columns). In contrast, Algorithm 13 computes a sketch Y via random projection (i.e., the test matrix
Q is standard normal). In most applications, we have strong reasons (Section 2.2.2) for preferring

random projections to column sampling.
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Cost of randomized Nystrém approximation

Throughout the chapter, we write T,,, for the time required to compute a matrix—vector product
(matvec) with A. Forming the sketch ¥ = AQ with sketch size s requires s matvecs, which costs
Timvs. The other steps in the algorithm have arithmetic cost O(ns?). Hence, the total computational
cost of Algorithm 13 is O(Tyys + s2n) operations. The storage cost is O(sn) floating-point numbers.

For Algorithm 13, the worst-case performance occurs when A is dense and unstructured. In this
case, forming Y costs O(n?s) operations. However, if we have access to the columns of A then we
may reduce the cost of forming Y to O(n?logs) by using a structured test matrix €2, such as a

scrambled subsampled randomized Fourier transform (SSRFT) map or a sparse map [109, 164].

A priori guarantees for the randomized Nystrom approximation

In this section, we present an a priori error bound for the randomized Nystrém approximation. The
result improves over previous analyses [66,67,164] by sharpening the error terms. This refinement is

critical for the analysis of the preconditioner.

Proposition 2.2.2 (Randomized Nystrom approximation: Error). Consider a psd matriz A € S} (R)
with eigenvalues Ay > --- > \,,. Choose a sketch size s > 4, and draw a standard normal test matrix

Q € R"*5. Then the rank-s Nystrém approzimation flnys computed by Algorithm 13 satisfies

- . 2(s —p) 2¢?s
EHA — AnySH < 2§I1£1§12—2 <]. + p—l) )\sfp+1 + ]ﬁ j;p )\j . (210)

The proof of Proposition 2.2.2 may be found in Section 2.8.2.

Proposition 2.2.2 shows that, in expectation, the randomized Nystrom approximation flnys
provides a good rank-s approximation to A. The first term in the bound is comparable with the
spectral-norm error As_,41 in the optimal rank-(s—p) approximation, | A|s_,. The second term in the

bound is comparable with the trace-norm error A; in the optimal rank-(s — p) approximation.

Jj>s—p
Proposition 2.2.2 is better understood via the following simplification.

Corollary 2.2.3 (Randomized Nystrom approximation). Instate the assumptions of Proposition 2.2.2.

Forp>2 and s =2p — 1, we have the bound
- 4e?
EJA = Apys|| < (3 + ?SIP(A) Ap-

The p-stable rank, stp(A) = X\, 1 370 N, reflects decay in the tail eigenvalues.

Corollary 2.2.3 shows that the Nystrém approximation error is on the order of A, when the rank

parameter s = 2p — 1. The constant depends on the p-stable rank sr,(A), which is small when the
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tail eigenvalues decay quickly starting at A,. This bound is critical for establishing our main results
(Theorems 2.4.2 and 2.5.1).

Random projection versus column sampling

Most papers in the machine learning literature [3,13] construct Nystrom approximations by sampling
columns at random from an adaptive distribution. In contrast, for most applications, we advocate
using an oblivious random projection of the matrix to construct a Nystrom approximation.

Random projection has several advantages over column sampling. First, column sampling offers
no computational advantage when we only have black-box matvec access to the matrix, while random
projections are natural in this setting and possess stronger performance guarantees. Second, it
can be very expensive to obtain adaptive distributions for column sampling. Indeed, computing
approximate ridge leverage scores costs just as much as solving the ridge regression problem directly
using random projections [44, Theorem 2]. Third, even with a good sampling distribution, column
sampling produces higher variance results than random projection, so it is far less reliable.

On the other hand, we have found that there are a few applications where it is more effective to
compute a randomized Nystrém preconditioner using column sampling in lieu of random projections.
In particular, this seems to be the case for kernel ridge regression (Section 2.6.5). Indeed, the entries
of the kernel matrix are given by an explicit formula, so we can extract full columns with ease.
Sampling s columns may cost only O(sn) operations, whereas a single matvec generally costs O(n?).
Furthermore, kernel matrices usually exhibit fast spectral decay, which limits the performance loss

that results from using column sampling in lieu of random projection.

2.3 Approximating the regularized inverse

Let us return to the regularized linear system Equation (2.1). The solution to the problem has the
form w, = (A+ pl)~1b. Given a good approximation A to the matrix A, it is natural to ask whether
w = (A + uI)~1b is a good approximation to the desired solution wy.

There are many reasons why we might prefer to use Ain place of A. In particular, we may be able
to solve linear systems in the matrix A+ ul more efficiently. On the other hand, the utility of this
approach depends on how well the inverse (/1 + uI)~! approximates the desired inverse (A + ul)~1.
The next result addresses this question for a wide class of approximations that includes the Nystrém

approximation.

Proposition 2.3.1 (Regularized inverses). Consider psd matrices A, A € St(R), and assume that
the difference £ = A — A is psd. Fix w>0. Then

A+ un - (4t | < L EN

< - 2.11
AEEY (2:11)
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Algorithm 2 Nystrom sketch-and-solve

1: Input: Psd matrix A € S} (R), right-hand side b, regularization p, rank s
2. [U,A] = RandNysAppx(A4, s)

3: Use Equation (2.12) to compute @ = (Anys + pI)~1b

4: Output: Approximate solution @ to Equation (2.1)

Furthermore, the bound (2.11) is attained when A = | Al for 1 < s <n.

The proof of Proposition 2.3.1 may be found in Section 2.8.4. It is based on [18, Lemma X.1.4].

Proposition 2.3.1 has an appealing interpretation. When ||A — 121|| is small in comparison to the
regularization parameter u, then the approximate inverse (A +pl)~! can serve in place of the inverse
(A+ pI)=t

2.4 Nystrom sketch-and-solve

The simplest mechanism for using the Nystrom approximation is an algorithm called Nystrom
sketch-and-solve. This section introduces the method, its implementation, and its history. We also
provide a general theoretical analysis that sheds light on its performance. In spite of its popularity,

the Nystrom sketch-and-solve method is rarely worth serious consideration.

2.4.1 Overview

Given a rank-s Nystrom approximation Anys of the psd matrix A, it is tempting to replace the
regularized linear system (A + pl)w = b with the proxy (Anys + pl)w = b. Indeed, we can solve
the proxy linear system in O(sn) time using the Sherman—Morrison—Woodbury formula [68, Eqn.
(2.1.4)]:

Lemma 2.4.1 (Approximate regularized inversion). Consider any rank-s matriz A with eigenvalue
decomposition A=UAUT. Then

(At pul) P =UM + pI)'UT + %(I— uuT). (2.12)

We refer to the approach in this paragraph as the Nystrom sketch-and-solve algorithm because it is
modeled on the sketch-and-solve paradigm that originated in [149].

See Algorithm 2 for a summary of the Nystrom sketch-and-solve method. The algorithm produces
an approximate solution @ to the regularized linear system Equation (2.1) in time O(Ti,ys + s%n).
The arithmetic cost is much faster than a direct method, which costs O(n3). It can also be faster
than running CG for a long time at a cost of O(Ty,y) per iteration. The method looks attractive if

we only consider the runtime, and yet...
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Nystrom sketch-and-solve only has one parameter, the rank s of the Nystrom approximation,
which controls the quality of the approximate solution w. When s < n, the method has an appealing
computational profile. As s increases, the approximation quality increases but the computational
burden becomes heavy. We will show that, alas, an accurate solution to the linear system actually
requires s =~ n, at which point the computational benefits of Nystrom sketch-and-solve evaporate
completely.

In summary, Nystrom sketch-and-solve is almost never the right algorithm to use. We will see
that Nystrom PCG generally produces much more accurate solutions with a similar computational

cost.

2.4.2 Guarantees and deficiencies

Using Proposition 2.3.1 together with the a priori guarantee in Proposition 2.2.2, we quickly obtain a

performance guarantee for Algorithm 2.

Theorem 2.4.2. Fizp > 2, and set s = 2p—1. For a psd matriz A € S} (R), construct a randomized
Nystrom approximation Anys using Algorithm 13. Then the approximation error for the inverse
satisfies

Ap
o (Ap +p)
Define w, = (A + ul)~'b, and select s = 2[1.5d(A)] + 1. Then the approzimate solution o
computed by Algorithm 2 satisfies

_ A _ 4e?
E|[(A+pl) ™" — (Anys + ) 7| < <3 + psr,,(A)) (2.13)

E[”“’_U’HQ] < 26e. (2.14)
[[will2

The proof of Theorem 2.4.2 may be found in Section 2.8.5.

Theorem 2.4.2 tells us how accurately we can hope to solve linear systems using Nystrom sketch-
and-solve (Algorithm 2). A sketch size s = O(di;(A)) is needed to guarantee relative error e.
When e is small, we anticipate that dJf(A) ~ n. In this setting, Nystrom sketch-and-solve has no
computational value: it is as expensive as a direct method. As a concrete example, let p = 1074
and suppose we want six digits of accuracy, i.e., ¢ = 107%. Then we must hope to find a sketch
size s so that Ay ~ 10719 to achieve the required accuracy; and s < n so the method offers a
computational advantage. It is rare to find a matrix whose spectrum decays rapidly enough to satisfy
both these constraints! Our analysis is sharp in its essential respects, so the pessimistic assessment is

irremediable.

2.4.3 History

Nystrom sketch-and-solve has a long history in the machine learning literature. It was introduced
in [171] to speed up kernel-based learning, and it plays a role in many subsequent papers on

kernel methods. In this context, the Nystrom approximation is typically obtained using column
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sampling [3,13,171], which has its limitations (Section 2.2.2). More recently, Nystrom sketch-and-solve
has been applied to speed up approximate cross-validation [158].

The analysis of Nystrom sketch-and-solve presented above differs from previous analysis. Prior
works [3,13] focus on the kernel setting, and they use properties of column sampling schemes to
derive learning guarantees. In contrast, we bound the relative error for a Nystrom approximation
based on a random projection. Our overall approach extends to column sampling if we replace

Proposition 2.2.2 by an appropriate analog, such as Gittens’s results [66].

2.5 Nystrom Preconditioned Conjugate Gradients

We now present our main algorithm, Nystrom PCG. This algorithm produces high accuracy solutions
to a regularized linear system by using the Nystrom approximation Anys as a preconditioner. We
provide a rigorous estimate for the condition number of the preconditioned system, and we prove
that Nystrom PCG leads to fast convergence for regularized linear systems. In contrast, we have

shown that Nystrom sketch-and-solve cannot be expected to yield accurate solutions.

2.5.1 The preconditioner

In this section, we introduce the optimal low-rank preconditioner, and we argue that the randomized

Nystrom preconditioner provides an approximation that is easy to compute.

Motivation

As a warmup, suppose we knew the eigenvalue decomposition of the best rank-s approximation of
the matrix: |A]s = VsA, V. How should we use this information to construct a good preconditioner
for the regularized linear system Equation (2.1)?

Consider the family of symmetric psd matrices that act as the identity on the orthogonal
complement of range(V;). Within this class, we claim that the following matrix is the optimal
preconditioner:

P, = 5 VilAs + pD)VE 4 (1= VD). (215)
As+1+p
The optimal preconditioner P, requires O(ns) storage, and we can solve linear systems in P, in
O(ns) time. Whereas the regularized matrix A4, has condition number r2(A,) = (A1 + u)/(An + p),
the preconditioner yields
k(P72 A, P = AA?TJFMM (2.16)
This is the minimum possible condition number attainable by a preconditioner from the class that
we have delineated. It represents a significant improvement when As41 < A;. The proofs of these

claims are straightforward; for details, see Section 2.8.6.
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Randomized Nystré6m preconditioner

It is expensive to compute the best rank-s approximation | A|s accurately. In contrast, we can compute
the rank-s randomized Nystrom approximation Anys efficiently (Algorithm 13). Furthermore, we have
seen that Anys approximates A nearly as well as the optimal rank-s approximation (Corollary 2.2.3).
These facts lead us to study the randomized Nystréom preconditioner, proposed in [109, Sec. 17]
without a complete justification.

Consider the eigenvalue decomposition Anys =UAU T and write A, for its sth eigenvalue. The

randomized Nystrom preconditioner and its inverse take the form

U+ pD)UT + (I -UUT);

(2.17)
VWA +pul) 0T + (1 -UUT),

Like the optimal preconditioner P, the randomized Nystrom preconditioner (2.17) is cheap to apply
and to store. We may hope that it damps the condition number of the preconditioned system
p-Y 2AHP*U 2 nearly as well as the optimal preconditioner P,. We will support this intuition with

a rigorous bound (Proposition 2.5.3).

2.5.2 Nystrom PCG

We can obviously use the randomized Nystrom preconditioner within the framework of PCG. We
call this approach Nystrom PCG, and we present a basic implementation in Algorithm 3. In the
case of very ill-conditioned least-squares problems, it is sometimes preferable to use other Krylov
methods such as LSQR [128] over CG. We have not found the need to use such methods as we focus
on regularized problems and are preconditioning, so that ng(Pfl/zAﬂpflﬂ) < u~t, where v is
machine precision, Nevertheless, the Nystrom precondtioner is easily extended to LSQR, one may

1/2 as a right-preconditioner with P as in (2.17).

use P~

More precisely, Algorithm 3 uses left-preconditioned CG. This algorithm implicitly works with the
unsymmetric matrix P~'A,,, rather than the symmetric matrix P~1/24, P=1/2. The two variants of
PCG yield identical sequences of iterates [148], but the former is more efficient. For ease of analysis,

our theoretical results are presented in terms of the symmetrically preconditioned matrix.

Complexity of Nystrom PCG

Nystrom PCG first constructs the randomized Nystrom approximation, and then solves the regu-
larized linear system with PCG. We have already discussed the cost of constructing the Nystrom
approximation (Section 2.2.2). PCG requires O(Ty,y) operations per iteration, and it uses a total of
O(n) additional storage.

For the regularized linear system Equation (2.1), Theorem 2.5.1 and Corollary 2.5.2 demonstrate
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Algorithm 3 Nystrom PCG

1: Input: Psd matrix A, righthand side b, initial guess xg, regularization parameter p, sketch size
s, solution tolerance 7

-0, A] = RandNysAppx(4, s)

ro =b— (A+ ul)zo

20 = P7ry {using (2.17)}

Po = 20

: while |||z > 7 do

v=(A+ ul)py

a = (rf'z)/(pEvo) {compute step size}

x = x0 + apo {update solution}

© PP

10:  r =rg— av {update residual}

11: 2z = P~r {find search direction via (2.17)}
122 B=(T2)/(rl2)

13:  To T, To T, po < 2+ Bpo, 20 & 2

14: end while

: Output: Approximate solution & to regularized system Equation (2.1)

=
ot

that it suffices to choose the sketch size s = 2 [1.5d%;(A)] + 1. In this case with high probability, the

overall runtime needed for Nystrom PCG to obtain e-relative error in the A,-norm is
O (die(A)°n + Ty (dlg(A) +log(1/€)))  operations.

When the effective dimension d/;(A) is modest, Nystrom PCG is very efficient.

In contrast, Section 2.4.2 shows that the running time for Nystrom sketch-and-solve has the
same form— with dZf(A) in place of dl;(A). That is, Nystrom PCG can produce solutions whose
residual norm is close to machine precision, whereas it is impossible to obtain high precision solutions

efficiently with Nystrom sketch-and-solve.

When is Nystrom PCG faster than Conjugate Gradient?

The preceding discussion shows that when the preconditioner is constructed appropriately, Nystrom
PCG converges at a linear rate, independent of the condition number of A,. It is therefore tempting

to conclude that when d;(A) is modest, Nystrom PCG is faster than CG, whose asymptotic cost is

0 (vt (1))

However, for problems where d/;(A) is modest, the classic analysis of CG is not sharp. Instead, a
tight analysis from [11], see also [73, Eq. 3.11] [169, Corollary 16], combined with Lemma 2.5.4 shows

the cost of CG is at most )
O <vadsH(A) + log (€>) :
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In detail, CG runs for d!;(A) iterations, during which it eliminates the eigenvalues larger than p.
Once these large outlying eigenvalues have been eliminated, the remaining eigenvalues are highly
clustered, so CG converges at a fast linear rate independent of the condition number.

Thus, when using a Gaussian test matrix to construct the preconditioner, Nystrom PCG is
not asymptotically faster than CG. Nevertheless, it is often faster in practice, owing to how the
computation is organized. The computation of the sketch AQ is performed as a matrix-matrix
product or in batch, which exploits the massive parallelism of modern computing architectures. In
contrast, CG cannot batch its matvecs, as it is inherently sequential—it computes one matvec per
iteration. Consequently, even though both algorithms use the same number of matvecs asymptotically,
Nystrém PCG can be significantly faster in practice. The situation is similar to the LSRN solver [114]
for highly overdetermined and underdetermined least-squares problems. When the data matrix is
highly overdetermined, [114] uses a Gaussian sketch with a sketch size proportional to the number of
columns—even though in exact arithmetic CG produces the exact solution when it is run for this
many iterations. Thus, LSRN does not improve over CG asymptotically in the number of matvecs,
but it is faster in practice thanks to parallelism and how it organizes the computation.

Figure 2.2 gives an example of the power of parallelism with the covtype dataset from LIBSVM [29].
A random features transform is performed, leading to a design matrix X of size (581012,5000). The
ridge regression problem with regularization nu = 1 is then solved via CG and Nystrém PCG with
a rank r = 500 preconditioner. Note that to compute the Nystrom preconditioner, Nystrom PCG
performs 1000 matvecs. To reach the required tolerance, Nystrom PCG incurs an additional 80
matvecs for 80 iterations in PCG, for a total matvec expenditure of 1080. In contrast, to solve this
problem, CG expends 1760 matvecs. Thus, the number of matvecs used is comparable in terms of
orders of magnitude. Despite this, Figure 2.2 shows that Nystrom PCG runs 20x faster than CG on
this example, which demonstrates the power of parallelism.

Finally, it is worth noting that there are settings where Nystrom PCG exhibits better asymptotic
performance than the sharp analysis of CG from [11]. When we have entrywise access to A, the cost
of the sketch can be reduced to O(n?log (d'(A))) by using a structured sketching map [40]. This
implies a total cost of O (n2 log (M
the refined analysis of CG when dlgz(A4) = O(y/n).

) + nd’e}f(A)z), which offers a significant improvement over

Comparison to other randomized preconditioning methods

Here we discuss Nystrom PCG in the context of prior work on randomized preconditioning [10,
69,96, 114,144] based on sketch-and-precondition and related ideas. All these prior methods were
developed for least squares problems. We summarize the complexity of each method for regularized
least-squares problems in Table 3.1.

The time to construct the sketch-and-precondition preconditioner is always larger than that of

the Nystrom preconditioner, since dig < d and v < 1. Indeed, constructing the preconditioner for
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Figure 2.2: Comparable matvecs does not mean comparable runtime. On the ridge regression
with the covtype random features problem, Nystrom PCG uses 1080 matvecs in total to solve the
problem, while CG uses 1760 matvecs. Despite the number of matvecs performed by both algorithms
being on the same order of magnitude, Nystrom PCG is about 20x faster than CG, as the 1000
matvecs used to construct the preconditioner are parallelized.

sketch-and-precondition costs £2(d?), which is the same as a direct method when d = Q(n) and is
prohibitive for high-dimensional problems. In contrast, Nystrom PCG is amenable to problems with
large d and runs much faster than sketch-and-precondition whenever d; < d. We note the analysis
of sketch-and-precondition can likely be improved to require only a sketch size of O(d!;/7). However,
this improvement by itself is only of theoretical value as d’y; is almost never known beforehand. Thus,
without an adaptive scheme or method to estimate d'y;, the best a priori sketch size one can select
with sketch-and-precondition methods is O(d/v). The Nystrom preconditioner also enjoys wider
applicability then sketch-precondition: it applies to square-ish systems, whereas the others only work
for strongly overdetermined or underdetermined problems. Nystrom PCG also improves slightly
on the complexity of AdalHS: while both scale linearly in d, Nystrom PCG removes unnecessary
logarithmic factors and the constant p < 0.18.

Of the methods presented in Table 3.1, sketched preconditioned SVRG [69] is closest to our
approach. The authors of [69] construct a preconditioner from a randomized low-rank approximation
to be deployed with the SVRG algorithm [86]. However, while both use a randomized low-rank
approximation to construct the preconditioner, the methods differ significantly. In particular, [69]
constructs the randomized preconditioner using the randomized block Krylov scheme in [119], which is
significantly more expensive than Algorithm 13 used for Nystrém PCG. Indeed, the randomized block

Krylov scheme requires s-matvecs with A O(log(n)) times and O(log(n)) costly orthogonalizations,
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Table 2.1: Regularized least-squares: Complexity of prior randomized preconditoning
methods vs. Nystréom PCG. The table compares the complexity of Nystrom PCG and state-of-
the-art randomized preconditioning methods in the overdetermined case n > d, assuming we can
access A only via matrix-vector products. The sketch-and-precondition preconditioner is constructed
from a sketch SA, where S € R**™ is a (1 £ ) Gaussian subspace embedding with sketch size
s =Q(d/v) and v € (0,1). The time to compute the sketch is O(Ty,,d/7y) and the iteration complexity
follows from the argument in [173, Sec 2.6]. For AdalHS, we use a sketch constructed from a
Gaussian subspace embedding with sketch size O(dl;/p) where p € (0,0.18). The complexity of
AdalIHS follows from [96, Theorem 5]. Similarly, the construction in [69] uses a Gaussian test

matrix. Let &5 = (s)\s +2 s )\j) /p. Then the overall runtime of sketched-preconditioned SVRG

follows from [69, Theorem 1] and the runtime of randomized block Krylov method used to construct
the preconditioner [109,119]. The complexity of Nystrém PCG is derived from Theorem 2.5.1
and Corollary 2.5.2.

Method Complexity References
Sketch-and-precondition (@) (vad/'y +d3 /v + Trmv 1125((11;;%) [10,114,144]
AdalHS O ((Tvdlig/ p + () /9) 108(dlig/ p) + Ty 125973 [96]
Sketched preconditioned O (Tmvslog(n) + ds?log?(n) [69]
SVRG +O (T + Fs + d2) log(1/e)
Nystrém PCG O (T dl; + d(dE)? + Ty log(1/e)) This work

which are needed for numerical stability [109]. Hence sketched preconditioned SVRG is considerably
slower than Nystrém PCG, see Table 3.1. Moreover, the theory in [69] also lacks any connection
with the effective dimension and provides no theoretical or practical guidance for selecting the rank
s. Last, note SVRG (unlike PCG) is typically used in settings where a full pass through the data, i.e.
a matvec, is too expensive. A preconditioner that requires multiple full passes through the data is an
odd choice in this setting.

In the context of kernel ridge regression (KRR), the random features method of [9] may be viewed
as a randomized preconditioning technique. [9] prove convergence guarantees for the polynomial
kernel with a (large) sketch size s = O ((d’;)?). In contrast, Nystrom PCG can be used for KRR
with any kernel and requires only the smaller sketch size s = O(dlg) to obtain fast convergence.

Finally, in a pure statistical learning setting, where the primary concern is test-set error and
not residual tolerance, fast approximate methods for KRR are also available. The current state of
the art is the Falkon algorithm from [147], which shares important commonalities with Nystrom-
sketch-and-solve. Instead of working with full kernel, it works with K,, € R"** where K, is
computed with respect to s-centers randomly sampled from the training set. Let D! denote the
effective dimension of the kernel covariance operator. Then under appropriate conditions and with
s = O (D), [147] shows Falkon obtains generalization error comparable to that of exact methods,
with runtime O(nD’log(n) + (D!4)3). Moreover, it can be shown under the same hypotheses that
D! = O (dly). Thus, in principle, Falkon should run much faster than Nystrom PCG or random

features PCG from [9], and yield nearly identical statistical performance on the test set. We have
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found Falkon does run faster, but there are gaps in performance relative to Nystrom PCG that cannot
be improved by increasing the number of centers. That is, to obtain the best statistical performance,
there is still a benefit to solving the problem to modest accuracy. See Section 2.6.5 for numerical
comparison and further discussion. Furthermore, Falkon only applies to vanilla KRR and kernelized
logistic regression [110], and not to Gaussian processes, an application where Nystrom PCG might
prove useful. Moreover, the Gaussian processes literature [61,170] has found exact inference yields
better learning performance than approximate methods.

In summary, Nystrom PCG applies to a wider class of problems than prior randomized precon-
ditioners and enjoys stronger theoretical guarantees for regularized problems. Nystrom PCG also

outperforms other randomized preconditioners numerically (Section 2.6).

Block Nystrom PCG

The Nystrom preconditioner can also precondition the block CG algorithm [126] to solve regularized
linear systems with multiple right-hand sides, as appear in applications to approximate cross
validation [158], influence functions [92], and hyperparameter optimization [107]. Blocking provides
advantages both in convergence rate and in memory management. The orthogonalization preprocessing
proposed in [53] ensures numerical stability for Block Nystrém PCG without further orthogonalization

steps during the iteration.

2.5.3 Analysis of Nystrom PCG

We now turn to the analysis of the randomized Nystrom preconditioner P. Theorem 2.5.1 provides a
bound for the rank s of the Nystrom preconditioner that reduces the condition number of 4, to a

constant. In this case, we deduce that Nystrom PCG converges rapidly (Corollary 2.5.2).

Theorem 2.5.1 (Nystrom preconditioning). Suppose we construct the Nystrom preconditioner P in
Equation (2.17) using Algorithm 13 with sketch size s = 2 [1.5dbg(A)] + 1. Using P to precondition

the regularized matriz A, results in the condition number bound
E[ra(P1/24,P7?)] < 28.

The proof of Theorem 2.5.1 may be found in Section 2.5.3.

Theorem 2.5.1 has several appealing features. Many other authors have noticed that the effective
dimension controls sample size requirements for particular applications such as discriminant analysis
[33], ridge regression [96], and kernel ridge regression [3,13]. In contrast, our result holds for any
regularized linear system.

Our argument makes the role of the effective dimension conceptually simpler, and it leads to
explicit, practical parameter recommendations. Indeed, the effective dimension dl;(A)) is essentially

the same as the sketch size s that makes the approximation error ||A — A,y | proportional to . In
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previous arguments, such as those in [3,13,33], the effective dimension arises because the authors
reduce the analysis to approximate matrix multiplication [36], which produces inscrutable constant
factors.

We also note Theorem 2.5.1 easily extends to the column sampling schemes using Proposition 2.5.3
and results from [3] to control ||E||. This is particularly attractive for kernel problems, as the Nystrom
preconditioner maybe constructed in O(ns?) operations. For the case of uniform column sampling,
the key quantity is the maximal marginal degrees of freedom

dM

mof

(4) = nlldiag(A(A + npD) )] .

Clearly, d"

mof

(A) > dl;(A), and is generally significantly larger. Combining our results with those
from [3], we can conclude a similar result to Theorem 2.5.1 using a rank of size s = O (d2 (A)log(n)).
Thus the guarantees for uniform column sampling are considerably worse than those of random
projection. In practice we have found the bound on s for uniform column sampling to be very
pessimistic, see Section 2.6.5 for corroborating numerical evidence.

Theorem 2.5.1 ensures that Nystrom PCG converges quickly.

Corollary 2.5.2 (Nystrom PCG: Convergence). Define P as in Theorem 2.5.1, and condition on
the event {ko (P~Y/2A,P~Y/%) < 56}. If we initialize Algorithm 3 with initial iterate wo = 0, then

the relative error &; in the iterate x; satisfies

_ lwe —wila,

o = <2-(0.77)"  where A w, = b.
[wsl 4,

In particular, after t = [3.81og(2/€)] iterations, we have relative error 0, < e.

The proof of Corollary 2.5.2 is an immediate consequence of the standard convergence result for
CG [161, Theorem 38.5, p. 299]. See Section 2.8.7. Note Corollary 2.5.2 also immediately implies the

total number of matvecs required to reach an e-accurate solution in the A-norm.

Analyzing the condition number

The first step in the proof of Theorem 2.5.1 is a deterministic bound on how the preconditioner (2.17)
reduces the condition number of the regularized matrix A,. Let us emphasize that this bound is

valid for any rank-s Nystrom approximation, regardless of the choice of test matrix.

Proposition 2.5.3 (Nystrom preconditioner: deterministic bound). Let A=UAUT be any rank-s
Nystrom approximation, with sth largest eigenvalue 5\3, and let E = A — A be the approximation

error. Construct the Nystrom preconditioner P as in (2.17). Then the condition number of the
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preconditioned matriz P_l/QAMP_l/2 satisfies

max{is __::u,l} < ko(P7Y24,P71/?)
nTH (2.18)

< (5\3 +p+ ||E||> min {1, AAS  An 20 }
B (As + p)(An + 1)

For the proof of Proposition 2.5.3 see Section 2.8.6. It turns out the only properties of the
Nystrom approximation we require in Proposition 2.5.3 is that Ais psd and F = A — A=o0. Thus,
Proposition 2.5.3 also applies to any preconditioner of the form (2.17) constructed from a matrix A
that possesses these two properties.

To interpret the result, recall the expression Equation (2.16) for the condition number induced by
the optimal preconditioner. Proposition 2.5.3 shows that the Nystrom preconditioner may reduce the
condition number almost as well as the optimal preconditioner. Equation (2.18) shows the price we
pay for using an efficiently computable preconditioner, is the condition number of the preconditioned
system depends upon our approximation error ||E||. This is natural given the preconditioner is
constructed from fl, a perturbed version of A. Hence we expect P to behave like a perturbed version
of Py, which is precisely the content of Proposition 2.5.3.

In particular, when || E|| = O(u), the condition number of the preconditioned system is bounded
by a constant, independent of the spectrum of A. This follows as A, < A, and || E| dominates A. In
this setting, Nystrom PCG is guaranteed to converge quickly.

The effective dimension and sketch size selection

How should we choose the sketch size s to guarantee that | E|| = O(u)? Corollary 2.2.3 shows how
the error in the rank-s randomized Nystrom approximation depends on the spectrum of A through
the eigenvalues of A and the tail stable rank. In this section, we present a lemma which demonstrates
that the effective dimension d(A) controls both quantities. As a consequence of this bound, we will
be able to choose the sketch size s proportional to the effective dimension d/g(A).

Recall from Equation (2.4) that the effective dimension of the matrix A is defined as
~_Ai(4)
die(A) = tr(A(A + I+=Ej7. 2.19

As previously mentioned, dfg;(A) may be viewed as a smoothed count of the eigenvalues larger than
. Thus, one may expect that A\, (A) < p for k 2> di;(A). This intuition is correct, and it forms the

content of Lemma 2.5.4.

Lemma 2.5.4 (Effective dimension). Let A € S} (R) with eigenvalues A\; > Ao > -+ > \,,. Let

> 0 be reqularization parameter, and define the effective dimension as in Equation (2.19). The
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following statements hold.
1. Fizy>0. If j > (1 +~ Y)dlg(A), then Nj < yp.
2. If k > d'4(A), then k=1 Zj>k A < (dlg(A) k) - p.

The proof of Lemma 2.5.4 may be found in Section 2.8.6.

Lemma 2.5.4, Item 1 captures the intuitive fact that there are no more than 2d/;(A) eigenvalues
larger than p. Similarly, Item 2 states that the effective dimension controls the sum of all the
eigenvalues whose index exceeds the effective dimension. It is instructive to think about the meaning

of these results when d!;(A) is small.

Proof of Theorem 2.5.1

We are now prepared to prove Theorem 2.5.1. The key ingredients in the proof are Proposition 2.2.2,

Proposition 2.5.3, and Lemma 2.5.4.

Proof of Theorem 2.5.1. Fix the sketch size s = 2 [1.5d5;(A)] + 1. Construct the rank-s randomized
Nystrom approximation /Alnys with eigenvalues ;\J Write £ = A — Anys for the approximation error.
Form the preconditioner P via Equation (2.17). We must bound the expected condition number of
the preconditioned matrix P*I/zAﬂP*l/2

First, we apply Proposition 2.5.3 to obtain a deterministic bound that is valid for any rank-s

Nystrom preconditioner:

At pt]E]

Ko(P~Y2A,P7Y/2) <24

1]
I
The second inequality holds because As < A < . This is a consequence of Lemma 2.2.1, Item 4 and
Lemma 2.5.4, Item 1 with v = 1. We rely on the fact that s > 2d!;(A).
Decompose s = 2p—1 where p = [1.5dk(A)]+1. Take the expectation, and invoke Corollary 2.2.3

to obtain )

E[ro(P~Y24,P7Y%)] <2+ <3 + 4;srp(A)> (Ap/1).

By definition, sr,(A4) - Ap =355,
Item 1 with v = 2 and Item 2 with k =p — 1 = [1.5d/;(A)] to reach

Aj. To complete the bound, apply Lemma 2.5.4 twice. We use

3-2u+4e? - 2u/3
1

Elre(P7Y2A, P72 <2+ <2426 =28,

which is the desired result. O
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2.5.4 Practical parameter selection

In practice, we may not know the regularization parameter u in advance, and we rarely know the
effective dimension dz(A). As a consequence, we cannot enact the theoretical recommendation for
the rank of the Nystrom preconditioner: s = 2 [1.5d5:(A)] + 1. Instead, we need an adaptive method

for choosing the rank s. Below, we outline three strategies.

Strategy 1: Adaptive rank selection by a posteriori error estimation

The first strategy uses the posterior condition number estimate adaptively in a procedure the
repeatedly doubles the sketch size s as required. Recall that Proposition 2.5.3 controls the condition

number of the preconditioned system:

fm(PVQAuplﬂ)ggAs+‘;+”Ew where B = A — Ay (2.20)
We get A for free from Algorithm 13 and we can compute the error || F|| inexpensively with the
randomized power method [95]; see Algorithm 4 in Section 2.10.1. Thus, we can ensure the condition
number is small by making ||E|| and A, fall below some desired tolerance. The adaptive strategy
proceeds to do this as follows. We compute a randomized Nystrom approximation with initial
sketch size s, and we estimate the error ||E|| using randomized powering. If ||E|| is smaller than
a prescribed tolerance, we accept the rank-sy approximation. If the tolerance is not met, then we
double the sketch size, update the approximation, and estimate ||E|| again. The process repeats
until the estimate for ||E| falls below the tolerance or it breaches a threshold sy for the maximum
sketch size. Algorithm 5 uses the following stopping criterions ||F|| < Tolg,, and A < Tolgas for
tolerances Tolg,, and Tolra;. The stopping criterion on 5\5 does not seem to be necessary in practice,
as it is usually an order of magnitude small than || E||, but it is needed for Theorem 2.5.5. Based on
numerical experience, we recommend the choices Tolg,, = 7p, Tolgay = 71¢/10 for 7 € [1,100]. For
full algorithmic details of adaptive rank selection by estimating || F||, see Algorithm 5 in Section 2.10.

The following theorem shows that with high probability, Algorithm 5 terminates with a modest
sketch size in at most a logarithmic number of steps, and PCG with the resulting preconditioner
converges rapidly.

Theorem 2.5.5. Run Algorithm 5 with initial sketch size sq, tolerances Tolgy, = T, Tolgas = Tu/11

where T > 1, and let § = Q(ZdeTf”/H (A)] 4+ 1. Then with probability at least 1 — §:

1. Algorithm 5 doubles the sketch size at most [log, (%)l times.

2. The final sketch size s satisfies

s < 4[2d°7 M (A)] + 2.
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3. With the preconditioner constructed from Algorithm 5, Nystrém PCG converges in at most

log(2/€) 7 - . _/1¥127/11-1
flog(l/m)] iterations, where 19 = W rEveyTee

Theorem 2.5.5 immediately implies the following concrete guarantee.

Corollary 2.5.6. Set 7 =44 and § = 1/4 in Algorithm 5 then with probability at least 3/4:
1. Algorithm 5 doubles the sketch size at most [log, (i)} times.

2. The final sketch size s satisfies
s < 4[2d5(A)] + 2.

3. With the preconditioner constructed from Algorithm 5, Nystrém PCG converges in at most
[3.481og(2/¢€)] iterations.

Strategy 2: Adaptive rank selection by monitoring ), /u

The second strategy is almost identical to the first, except we monitor the ratio A /v instead of
| E|l/p. Strategy 2 doubles the approximation rank until A, /p falls below some tolerance (say, 10) or
the sample size reaches the threshold sp.x. The approach is justified by the following proposition
which shows that once the rank s is sufficiently large, with high probability, the exact condition

number differs from the empirical condition number (5\5 + u)/p by at most a constant.

Proposition 2.5.7. Let 7 > 0 denote the tolerance and § > 0 a given failure probability. Suppose
the rank of the randomized Nystrom approzimation satisfies s > 2[2d } (A))] + 1. Then

]P’{ </€2(P1/2AHP1/2) - w) < ;} >1-4, (2.21)
n
+

where ()4 = max{-,0}.

This strategy has the benefit of saving a bit of computation and is preferable when a moderately
small residual is sufficient, eg, in machine learning problems where training error only loosely predicts

test error.

Strategy 3: Choose s as large as the user can afford

The third strategy is to choose the rank s as large as the user can afford. This approach is coarse,
and it does not yield any guarantees on the cost of the Nystrom PCG method.

Nevertheless, once we have constructed a rank-s Nystrom approximation we can combine the
posterior estimate of the condition number used in strategy 1 with the standard convergence theory
of PCG to obtain an upper bound for the iteration count of Nystrom PCG. This gives us advance

warning about how long it may take to solve the regularized linear system. As in strategy 1 we
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compute the error ||E| in the condition number bound inexpensively with the randomized power
method.

2.6 Applications and experiments

In this section, we study the performance of Nystrom PCG on real world data from three different
applications: ridge regression, kernel ridge regression, and approximate cross-validation. The
experiments demonstrate the effectiveness of the preconditioner and our strategies for choosing the
rank s compared to other algorithms in the literature: on large datasets, we find that our method

outperforms competitors by a factor of 5-10 (Table 2.3 and Table 2.8).

2.6.1 Preliminaries

We implemented all experiments in MATLAB R2019a and MATLAB R2021a on a server with 128
Intel Xeon E7-4850 v4 2.10GHz CPU cores and 1056 GB. Except for the very large scale datasets
(n > 10°), every numerical experiment in this section was repeated twenty times; tables report the
mean over the twenty runs, and the standard deviation (in parentheses) when it is non-zero. We
highlight the best-performing method in a table in bold.

We select hyperparameters of competing methods by grid search to optimize performance. This
procedure tends to be very charitable to the competitors, and it may not be representative of their
real-world performance. Indeed, grid search is computationally expensive, and it cannot be used
as part of a practical implementation. A detailed overview of the experimental setup for each
application may be found in the appropriate section of Section 2.11, and additional numerical results

in Section 2.12.

2.6.2 Ridge regression

In this section, we solve the ridge regression problem (2.7) described in Section 2.1.3 on some standard
machine learning data sets (Table 2.2) from OpenML [168] and LIBSVM [29]. The effective dimension
dl¢ and the numerical rank of these matrices provide insight into the difficulty of each problem.
These are reported in Table 2.2. We compare Nystrom PCG to standard CG and two randomized
preconditioning methods, the sketch-and-precondition method of Rokhlin and Tygert (R&T) [144]
and the Adaptive Iterative Hessian Sketch (AdaIHS) [96].

Experimental overview

We perform two sets of experiments: computing regularization paths on CIFAR-10 and Guillermo,
and random features regression [136,138] on shuttle, smallNORB, Higgs, YearMSD, and covtype with

specified values of y. The values of ;1 may be found in Section 2.11.1. We use the Euclidean norm
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Table 2.2: Ridge regression: Dataset statistics. The table reports the effective dimension and
numerical rank (in double precision) of each dataset. For CIFAR-10 and Guillermo, we report dtj;
using the value of y on the regularization path that yields the best test error. The numerical rank
(NumRank) of a matrix A € R"*™ with eigenvalues Ay > - -+ > Ay is max{k : Ay > Ay€}, the number
of eigenvalues larger than machine precision € scaled by the spectral norm of A.

Dataset n d dif 5 NumRank
CIFAR-10 40,000 3,072 1,258 3,072
Guillermo 16,000 4,297 1,885 2,000
smallNorb-rf 24,300 10,000 1,806 6,812

shuttle-rf 43,300 10,000 439 853

Higgs-rf 800,000 | 10,000 936 10,000
YearMSD-rf 463,715 | 15,000 7,262 15,000
covtype-binary | 464,810 | 15,000 | 14,629 15,000

||7|l2 of the residual as our stopping criteria and declare convergence when |[|r||2 < 10~!°. For both
sets of experiments, we use Nystrom PCG with adaptive rank selection (Algorithm 5 in Section 2.10).
For experimental details, see Section 2.11.1.

The regularization path experiments solve Equation (2.7) over a regularization path p = 107
where j = 3,--- , —6. We first solve the problem for the largest © and then solve for progressively
smaller p by warm starting from the previous solution. We allow every method at most 500 iterations
to reach the desired tolerance, for each value of p.

We report the test error achieved on each dataset in Section 2.9.1. We also compare to the
test-error obtained by a sketch-and-solve approach that approximates the inverse using the Nystrom
preconditioner, and which is known to admit good learning guarantees under appropriate conditions
[3,13].

Computing the regularization path

Figure 2.3 shows how the effective dimension d; varies with the regularization parameter p on
two small datasets. We see that the effective dimension reaches our chosen maximum sketch size,
Smax = 0.5d for CIFAR-10 and $y,,x = 0.4d for Guillermo, when p is small enough. For CIFAR-10,
Nystrom PCG chooses a rank much smaller than the effective dimension for small values of p, yet
the method still performs well (Figure 2.4).

Figure 2.4 show the effectiveness of each method for computing the entire regularization path.
Nystrom PCG is the fastest almost uniformly. The one exception is on CIFAR-10, where R&T
performs better for the smallest regularization parameter, for which diy; ~ d. That is, the O(d?)
cost of forming the R&T preconditioner is not worthwhile unless di; ~ d and the regularization is
negligible.

AdalHS is rather slow. It increases the sketch size parameter several times along the regularization

path. Each time, AdalHS must form a new sketch of the matrix, approximate the Hessian, and



CHAPTER 2. RANDOMIZED NYSTROM PRECONDITIONING 29

5000

3000
2500 40001
20009 — g 30004 —— d
x x
& 1500 dost (1) 5 degt (1)
== ¢ (Nystrém PCG) 20001 == ¢ (Nystrom PCG)
1000
500 1000+ /
) e — 0 ———
10 102 10! 10° 10! 1072 107% 10°* 10° 107 10° 102 10! 10° 10 1072 1078 10°* 10 107
n 1%
(a) CIFAR 10 (b) Guillermo

Figure 2.3: Ridge regression: Adaptive sketch size selection. Nystrom PCG with adaptive
rank selection (Algorithm 5) selects a preconditioner whose rank is less than or equal to the effective
dimension. Error bars for the rank selected by the adaptive algorithm are so small that they are not
visible in the graph: the behavior of the adaptive algorithm is essentially deterministic across runs.
See Section 2.6.2.

compute a Cholesky factorization.

Random features regression

Table 2.3 compares the performance of Nystréom PCG, AdalHS, and R&T PCG for random features
regression. Table 2.3 shows that Nystrom PCG performs best on all datasets for all metrics. The most
striking feature is the difference between sketch sizes: AdalHS and R&T require much larger sketch
sizes than Nystrom PCGQG, leading to greater computation time and higher storage costs. Table 2.3,
in conjunction with Table 2.2, shows the adaptive scheme in Section 2.5.4 effectively selects a rank
on the order of df; when the effective dimension is small or moderate.

Nystrom PCG also works well for sketch sizes smaller than the effective dimension. For example,
on YearMSD-rf, Nystrom PCG converges quickly despite a rank three times smaller than dl. For
covtype-rf, where dhy ~ d, the convergence is no longer as fast, but it still outperforms R&T, owing
to the expensive O(d?) cost of constructing the preconditioner. Thus, even in settings where dlg ~d,
Nystrom PCG may still be faster than R&T when d is large enough. For a discussion on the statistical

performance of Nystrom PCG and the test set error obtained on all datasets, see Section 2.9.1.

2.6.3 Approximate cross-validation

In this subsection we use our preconditioner to compute approximate leave-one-out cross-validation

(ALOOCYV), which requires solving a large linear system with multiple right-hand sides.
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Figure 2.4: Ridge regression: Runtime and residual. Nystrom PCG is either the fastest
method, or it is competitive with the fastest method, for all values of the regularization parameter .
CG is generally the slowest method. All the methods reliably achieve the target residual along the
entire regularization path, except for ordinary CG at small values of u. See Section 2.6.2.

Background

Cross-validation is an important machine-learning technique to assess and select models and hyper-
parameters. Generally, it requires re-fitting a model on many subsets of the data, so can take quite
a long time. The worst culprit is leave-one-out cross-validation (LOOCYV), which requires running
an expensive training algorithm n times. Recent work has developed approximate leave-one-out
cross-validation (ALOOCYV), a faster alternative that replaces model retraining by a linear system
solve [64,135,172]. In particular, these techniques yield accurate and computationally tractable
approximations to LOOCV.

To present the approach, we consider the infinitesimal jacknife (IJ) approximation to LOOCV
[64,157]. The 1J approximation computes

| . .
017 =0+ ~H ' (O)Vol(.;), (2.22)
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Table 2.3: Ridge regression: Nystrém PCG versus AdalHS and R&T PCG. Nystrom PCG
outperforms AdalHS and R&T PCG in iteration (#iters) and runtime for all datasets. Nystrom
PCG also requires much less storage (Sfina1). For Nystrom PCG, the estimated condition number of
the preconditioned system xpcg is computed using the upper bound in Proposition 2.5.3.

Dataset Method Sfinal KPCG #iters Runtime (s)
AdalHS 10,000 - 66.9 (0.933) 66.9 (5.27)
shuttle-rf R&T PCG | 20,000 - 60.15 242.6 (12.24)
NysPCG 800 4.17 (0.161) 13.1 (1.47) 9.78 (0.943)
AdalHS | 12,800 - 38.7 (1.42) 41.0 (2.46)
smallNORB-rf | R&T PCG | 20,000 - 345 (1.31) 1815 (6.53)
NysPCG 800 18.5 (0.753) | 31.5 (0.489) 6.67 (0.372)
AdalHS 30,000 - 44 1,327.3
YearMSD-rf R&T PCG | 30,000 - 49 766.5
NysPCG 2,000 22.7 22 209.7
AdalHS 6,400 - 55 1,052.7
Higgs-rf R&T PCG | 20,000 - 53 607.4
NysPCG 800 23.8 28 91.26
AdalHS 30,000 - 211 1,633.5
covtype-rf R&T PCG | 30,000 - 50 846.4
NysPCG 2000 2.12e+4 430 540.05

Table 2.4: ALOOCYV: Datasets and experimental parameters. For each dataset we consider
two values of u, we aso report the exact effective dimension

Dataset n d 7mz(A) I sinit | deg
Gisette 6,000 5,000 99.1% 161_4 850 éig
real-sim 72,308 | 20,958 | 0.245% 1::481 500 6?3&%6

rcvl.binary | 20,242 | 47,236 0.157% 12:;1 500 3?:&?3
SVHN 73,257 | 3,072 100% 161_4 850 61704

where H (é) € R4 ig the Hessian of the loss function at the solution é, for each datapoint x;. The
main computational challenge is computing the inverse Hessian vector product H~(6)V,l(8, z;).
When n is very large, we can also subsample the data and average Equation (2.22) over the subsample
to estimate ALOOCYV. Since ALOOCYV solves the same problem with several right-hand sides, blocked
PCG methods (here, Nystrom blocked PCG) are the tool of choice to efficiently solve for multiple
right-hand sides at once. To demonstrate the idea, we perform numerical experiments on ALOOCV

for lo-regularized logistic regression. The datasets we use are all from LIBSVM [29]; see Table 2.4.

Experimental overview

We perform two sets of experiments in this section. The first set of experiments uses Gisette and
SVHN to test the efficacy of Nystrom sketch-and-solve. These datasets are small enough that we can
factor H () using a direct method. We also compare to block CG and block PCG with the computed
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Table 2.5: ALOOCYV: Small datasets. The error for a given value of u is the maximum relative
error on 100 randomly sampled datapoints, averaged over 20 trials.

Nystrom Block
Dataset w sketch-and-solve Block CG Nystrom PCG
Gisette 1 4.99e—-2 2.68e—11 2.58e—12
Gisette le—4 1.22e—0 1.19e-11 6.59e—-12
SVHN 1 9.12e-5 2.80e-13 1.26e-13
SVHN le—4 3.42e-1 2.01e-10 1.41e-11

Nystrom approximation as a preconditioner. To assess the error due to an inexact solve for datapoint
zj, let wi(x;) = H=1(0)Vl(6, x;). For any putative solution w(x;), we compute the relative error
|w(z;) — we(z;)|l2/]|we(z;)]|2. We average the relative error over 100 data-points z;.

The second set of experiments uses the larger datasets real-sim and rcvl.binary and small values
of u, the most challenging setting for ALOOCV. We restrict our comparison to block Nystrém PCG
versus the block CG algorithm, as Nystrom sketch-and-solve is so inaccurate in this regime. We

employ Algorithm 5 to construct the preconditioner for block Nystrom PCG.

Nystrom sketch-and-solve

As predicted, Nystrom sketch-and-solve works poorly (Table 2.5). When p = 1, the approximate
solutions are modestly accurate, and the accuracy degrades as p decreases to 1074, The experimental
results agree with the theoretical analysis presented in Section 2.4, which indicate that sketch-
and-solve degrades as p decreases. In contrast, block CG and block Nystrom PCG both provide

high-quality solutions for each datapoint for both values of the regularization parameter.

2.6.4 Large-scale ALOOCYV experiments

Table 2.6 summarizes results for block Nystrom PCG and block CG on the larger datasets. When
i = 1074, block Nystrém PCG offers little or no benefit over block CG because the data matrices
are very sparse (see Table 2.4) and the rcvl problem is well-conditioned (see Table 2.11).

For pu = 10~8, block Nystrém PCG reduces the number of iterations substantially, but the speedup
is negligible. The data matrix A is sparse, which reduces the benefit of the Nystrom method. Block
CG also benefits from the presence of multiple right-hand sides just as block Nystrom PCG. Indeed,
O’Leary proved that the convergence of block CG depends on the ratio (As + p)/ (A, + p), where s is
is the number of right-hand sides [126]. Consequently, multiple right-hand sides precondition block

CG and accelerate convergence. We expect bigger gains over block CG when A is dense.
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Table 2.6: ALOOCYV: Large datasets. Block Nystrom PCG outperforms block CG for small p.

Dataset n Method #iters | Runtime (s)
ol Te 4 Block CG 12 11.06 (0.874)
le—4 | Block Nystrom PCG 10 11.87 (0.767)

revl le-8 Block QG 52 39.03 (2.97)

le-8 | Block Nystrom PCG 15 24.1 (1.79)

el | 1o Block CG 12 23.04 (2.04)
le—4 | Block Nystrom PCG 8 19.05 (1.10)

el | 1e8 Block CG 90 163.7 (12.3)

Te8 | Block Nystrom PCG 32 68.9 (5.30)

2.6.5 Kernel ridge regression

Our last application is kernel ridge regression (KRR), a supervised learning technique that uses a
kernel to model nonlinearity in the data. KRR leads to large dense linear systems that are challenging

to solve.

Background

We briefly review KRR, [152]. Given a dataset of inputs x; € D, their corresponding outputs b; € R
for i =1,...,n, and a kernel function K(z,y), KRR finds a function f, : D — R in the associated
reproducing kernel Hilbert space H that best predicts the outputs for the given inputs. The solution

f» € H minimizes the square error subject to a complexity penalty:

n

fo=orgmin o377~ 00 + LF1Be (223)

fer n =

where || - || denotes the norm on H. Define the kernel matrix K € R™*" with entries K;; = K(z;, x;).

The representer theorem [154] states the solution to (2.23) is
fulx) = ZailC(amxi),
i=1
where a = (aq, ..., a,) solves the linear system

(K +nul)a=0. (2.24)

Solving the linear system (2.24) is the computational bottleneck of KRR. Direct factorization methods
to solve (2.24) are prohibitive for large n as their costs grow as n?; for n > 10* or so, iterative methods
are generally preferred. However, K is often extremely ill-conditioned, even with the regularization

term nul. As a result, CG for Problem (2.24) converges slowly.
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Experimental overview

We use Nystrom PCG (NysPCG) to solve several KRR problems derived from classification problems
on real world datasets from [29,168]. For all experiments, we use the Gaussian kernel K(z,y) =
exp(—||x — y||?/(20?)). Following [9], we take a machine learning perspective: the objective is
to minimize test set error rather than to achieve the smallest possible residual. We compare our
method to random features PCG (rfPCG), proposed in [9]. We do not compare to vanilla CG as
it is much slower than NysPCG and rfPCG. We also compare to Falkon [147], a state-of-the-art
scalable approximation method for kernel ridge regression. For Falkon, we use the author’s Matlab
implementation provided here: https://github.com/LCSL/FALKON paper. This implementation is
more optimized than the implementations of NysPCG and rfPCG, making use of C++ for several
important steps. Thus, the comparison to rfPCG and NysPCG made here is very favorable to Falkon.

All datasets either come with specified test sets, or we create one from a random 80-20 split.
The PCG tolerance, o, and p were all chosen to achieve good performance on the test sets (see
Table 2.8 below). In particular, the test set error on a given dataset saturates or increases if PCG
(either rfPCG or NysPCGQG) is not stopped after reaching the selected tolerance. Both rfPCG and
NysPCG were allowed to run for a maximum of 500 iterations. We report statistics for each dataset
and experimental parameters in Table 2.7.

In addition, Table 2.7 also reports estimates of the effective dimension and the numerical rank for
each kernel matrix. For these KRR systems, computing the exact effective dimension and numerical
rank is too expensive, even in single-precision. Instead, we use procedures described in [112] to
estimate the effective dimension and numerical rank (in single precision) of the kernel matrix, and
report only a lower bound on the effective dimension or numerical rank if the estimate exceeds
[0.25n].

We run two sets of experiments. For the datasets with n < 10°, the “oracle” method uses the a
posteriori best parameters for rfPCG (the rank of random features approximation used to construct
the preconditioner) and NysPCG (the sketch size s), chosen by grid search, which we call Or-rfPCG
and Or-NysPCG respectively. We also compare to the adaptive NysPCG algorithm (Ada-NysPCG)
described in Section 2.5.4. We restrict values for s and the rank of the random features approximation
to be less than 10,000 to ensure the preconditioners are cheap to apply and store. Ada-NysPCG
for each dataset was initialized at s = 2,000, which is smaller than 0.05n for all datasets. For the
datasets with n > 10°, we restrict both s and the rank of the random features approximation to
1,000, which corresponds to less than 0.01n. This fixed-rank setting allows us to see how both
methods perform in the situation where the size of the preconditioner is restricted owing to memory
constraints. We then run both algorithms until they reach the desired tolerance or the maximum
number of iterations. Falkon’s main hyperparameter is the number of centers, which is typically
taken to be a small fraction of the training set. For our experiments, we selected the number of
centers via grid search using the grid {[0.01n], [0.025n], [0.05n], [0.075n], [0.1n]}. The number of
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Table 2.7: Kernel ridge regression: Datasets and experimental parameters. The table
shows experimental parameters and estimates of the effective dimension and numerical rank (see
Table 2.2) of each kernel in single precision. These estimates are computed using sketching methods
as described in [112].

Dataset n d Nelasses m o Tol da NumRank
ijennl 49,990 49 2 le-6 0.5 le-3 5,269 > 12,498
MNIST 60,000 784 10 le-7 5 le-4 | > 15,000 > 15,000

Sensorless 48,509 48 11 le-8 | 0.8 | le4 1,948 2,331
SensIT 78,823 100 3 le-8 3 le-3 8,186 9,216

MiniBooNE | 104,052 50 2 le-7 5 le-4 522 1,065

EMNIST 105,280 | 784 47 le-6 8 le-3 17,079 > 26,320

Santander 160,000 | 200 2 le-6 7 le-3 | > 40,000 > 40,000

iterations used for solving the Falkon linear system is fixed at 20, matching the setting used by the
authors in https://github.com/LCSL/FALKON paper for datasets satisfying n < 10°.

We use column sampling to construct the Nystrom preconditioner for all KRR problems. On
these problems, random projection takes longer and yields similar performance (with somewhat lower

variance).

Experimental results

Table 2.8 summarizes the results for the KRR experiments. Table 2.8 shows that both versions of
Nystrom PCG perform better than random features preconditioning on all the datasets considered.
Nystrom PCG also uses less storage. In the fixed-rank setting with the larger scale datasets, Nystrom
PCG performs better than random features PCG. The second column in Table 2.8 shows the adaptive
strategy proposed in Section 2.5.4 to select the sketch size s works very well. In contrast, it is difficult
to choose the rank for random features preconditioning: the authors of [9] provide no guidance except
for the polynomial kernel. Moreover, the success of Nystrom PCG is robust to reaching the effective
dimension. Indeed, on MNIST, EMNIST, and Santander, Table 2.7 shows s is much smaller than
dls, yet Nystrom PCG still converges quickly using the constructed preconditioner. This robustness
is important from the viewpoint of practice, for as Table 2.7 reveals, the effective dimension d’j; is
often large.

Table 2.8 shows that good test set error is obtained on all datasets. Significantly, Nystrom PCG
yields lower test set error than approximate methods such as Falkon and a sketch-and-solve style
method that simply applies the inverse of the Nystrom preconditioner to the righthand side (NysPrec).
However, Falkon and NysPrec run considerably faster as they work with only a subsample of the
kernel matrix. We also see that Falkon generally outperforms NysPrec. The gap between Nystrom
PCG and Falkon can be quite large, such as with EMNIST where Nystréom PCG obtains an error of
15.00% compared to the 17.57% obtained by Falkon. Furthermore, we found this gap persisted even

as we varied the number of centers from 0.01n to 0.5n, at which point Falkon becomes more expensive
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than Nystrom PCG, see Figure 2.5. Our observation that exact methods outperform approximate
methods is consistent with findings in [9], which noted a similar performance gap between random
features PCG and the basic random features method of [136]. Thus, even in the statistical learning

setting, solving the problem more accurately using the full data does yield improved performance.
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Table 2.8: Kernel ridge regression: ranks, iteration count, and total runtime. We denote
random features PCG and Nystrom PCG by rfPCG and NysPCG respectively. The prefixes Or
and Ada stand for oracle and adaptive. NysPrec is a sketch-and-solve style method that applies the
inverse of the Nystrom preconditioner to the righthand side. The total runtime for for rfPCG and
both variants of NysPCG also includes the the time required compute the kernel matrix. All variants
of NysPCG uniformly outperforms rfPCG, in both runtime and number of iterations. NysPCG also
attains the best test error across all problem instances.

Rank or . Total Test
Dataset Method #centers Fiters Runtime (s) error
OrtfPCG 3,000 63.8(2.66) 56.2(2.33)
Ada-NysPCG 2,000 137(1.77) 19.9(1.47) 1.25%
icjnnl Or-NysPCG 3,000 31.8(0.835) | 51.2(1.60)
NysPrec 3,000 - 6.09(0.151) 7.06%
Falkon 1,999 - 1.60(0.122) 1.30%
Or-rfPCQ 9,000 314.5(2.8%) | 291.4(6.93)
Ada-NysPCG | 6,000 (1,716) | 78.5(17.65) | 185.8(46.39) | 1.22%
MNIST Or-NysPCG 1,000 77.9(2.08) | 129.4(2.08)
NysPrec 4,000 - 31.36(0.427) 34.57%
Falkon 6,000 - 7.01(0.288) 1.08%
Or-rfPCQ 5,000 55.4(2.35) 56.5(3.96)
Ada-NysPCG 2,000 22.0(0.510) 40.0(1.26) 2.05%
Sensorless Or-NysPCG 2,000 21.7(0.571) 39.3(1.63)
NysPrec 2,000 - 9.21(0.248) 3.91%
Falkon 3,639 - 3.12(0.214) 2.16%
Or-rfPCQ 7,000 68.0(4.31) 146.0(6.19)
Ada-NysPCG 2,000 47.8(1.72) 120.9(2.43) 12.83%
SensIT Or-NysPCG 2,000 48.7(3.40) 112.4(6.41)
NysPrec 2,000 - 14.10(0.321) 22.55%
Falkon 7,883 - 17.55(0.494) | 13.05%
rfPCG 1,000 92 240.8
. NysPCQ 1,000 72 224.0 7.93%
MiniBooNE NysPrec 1,000 - 9.06 8.90%
Falkon 10,046 - 43.03 7.96%
rfPCG 1,000 154 753.1
NysPCG 1,000 32 3%6.3 15%
EMNIST NysPrec 1,000 - 9.21 26.90%
Falkon 10,528 - 24.5 17.57%
rfPCG 1,000 160 1019.7
Santander NysPCG 1,000 31 374.1 8.90%
NysPrec 1,000 - 13.66 19.24%
Falkon 16,000 - 43.06 9.26%
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Figure 2.5: Falkon saturates. Falkon’s performance saturates as the number of centers increases
from 0.01n to 0.5n, and always underperforms Nystrom PCG. Furthermore, once the number of
centers reaches 0.5n, Falkon runs slower than Nystrom PCG.

2.7 Conclusion

We have shown that Nystrom PCG delivers a strong benefit over standard CG both in the theory
and in practice, thanks to the ease of parameter selection, on a range of interesting large-scale
computational problems including ridge regression, kernel ridge regression, and ALOOCV. In our
experience, Nystrom PCG outperforms all generic methods for solving large-scale dense linear systems
with spectral decay. It is our hope that this chapter motivates further research on randomized

preconditioning for solving large scale linear systems and offers a useful speedup to practitioners.

2.8 Proofs not appearing in the main chapter

2.8.1 Proof of Proposition 2.2.2
Useful facts about Gaussian random matrices

In this subsection we record some useful results about Gaussian random matrices that are necessary

for the proof of Proposition 2.2.2. The proof of Proposition 2.2.2 follows in Section 2.8.2.

Proposition 2.8.1 ( [77,120]). Let G be (s — p) x s standard Gaussian matriz with s > 4 and

2<p<s—2. Then
1/2 s—p
EIGHE) " =/ ~— (2.25)
2y 1/2 s
(EIGT)?) " <e, /p2 — (2.26)

Remark 2.8.2. The first display in Proposition 2.8.1 appears in [77], while the second display is due

i

and




CHAPTER 2. RANDOMIZED NYSTROM PRECONDITIONING 39

to [120].
We also require one new result, which strengthens the improved version of Chevet’s theorem due
to Gordon [70]

Proposition 2.8.3 (Squared Chevet). Fiz matrices S € R™*™ and T € R"** and let G € R™*"™ be

a standard Gaussian matriz. Then
E|[SGT|* < (ISIIT I F + ISI#I1T1)* -

We defer the proof of Proposition 2.8.3 to Section 2.8.3.

Remark 2.8.4. Chevet’s theorem states that [77]
EISGTI < STz + ST

Proposition 2.8.3 immediately implies Chevet’s theorem by Holder’s Inequality.

2.8.2 Proof of Proposition 2.2.2

Proof. Proposition 11.1 in [109, Sec. 11] and the argument of Theorem 11.4 in [109, Sec. 11] shows
that
1A = Auysll < 18 s—pir I + [ Zo—pra Q20017

Taking expectations and using [|Ss_pi1> = As—pt1 gives
E[A = Angs]l < Asmpr1 + El|Zo-pr1 00|17
Using the law of total expectation, the second term may be bounded as follows
El2s-p 1022907 = E (Ea, |[2:-p10291]7)])

(a) i 02
< E (IZpr 1190115 + 125 pralle 1901

®)
< 25— pr1 IPEIQIF + 20| pra |FENQ] 1

(¢) 2(s — 2e?s
< ( p) As—p-i—l + S 1 E A] )
p—1 p?—11.
j>s—p

where in step (a) we use Squared Chevet (Proposition 2.8.3). In step (b) we invoke the elementary

identity (a + b)? < 2a® + 2b%, and in step (c¢) we apply the bounds from Proposition 2.8.1. Inserting
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the above display into the bound for E[|A — A,y]| yields
- 2(s—p) 2e%s
E[|A — Apys|| < <1 + pl> As—p+1+ 21 Z Aj
J>s—p
As the bound above holds for any 2 < p < s — 2, we may take the minimum over admissible p to

conclude the result. O

2.8.3 Proof of Squared Chevet

In this subsection we provide a proof of Proposition 2.8.3. The proof is based on a Gaussian

comparison inequality argument, a standard technique in the high dimensional probability literature.

Proof. Let
U={STa:|al]; =1} c R™

V={Tb: b, =1} c R"

and for u € U, v € V consider the Gaussian processes
Yiw = (u,Gv) + ||| |lv]ly  and Xy = [|S[[(R,v) + [|[0]{g, w),

where
o G € R™*" i a Gaussian random matrix,
e g, h are Gaussian random vectors in R™ and R" respectively,
e and v is N(0,1) in R.

Furthermore, G, g, h and ~ are all independent.
A standard calculation shows that the conditions of Slepian’s lemma [100, Corollary 3.12, p. 72]

are satisfied. Hence we conclude that
P (max Yoo > t> <P <maquU > t> . (2.27)

We are now ready to prove Proposition 2.8.3. Throughout the argument below, we use the notation
X+ = max{X,0}.

We first observe by Jensen’s inequality with respect to v and the variational characterization of
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the singular values that

Emax(Vio)} =E = max (57, GT0) + IS(1ITbll7)*.

>Es max STa, GTH)?) , = E¢||SGT|.
llall=1,||b]|=1 (¢ ) )+ | |
Hence E¢||SGT||? is majorized by Emaxy,, (Yyy)%. For Xy, we note that

2
na <EmacXl, =E max (|S|(h.T6) + [Tb](g. 57a)

(a)
< E(ISIPITTRI + 2 SITINTT RIIISgl + 1T121Sgl1?)
()
< ISIPITNE + 20T NS ATl F + 1T IS1E
= (ISNTIl + 1TI0S1F)?,
where in step (a) we expand the quadratic and use Cauchy-Schwarz. Step (b) follows from a

straightforward calculation and Hoélder’s inequality.

To conclude, we use integration by parts and (2.27) to obtain

u

(oo} (oo}
= / tP <max Yoo > t) dt < / tP (max KXo > t) dt
0 u,v 0 u,v

= / tP (max(Xm,)+ > t> dt = Emax(X,.)%
0

u,v u,v

E¢||SGT||> < Emax (Yy,)% = / tP (maX(Ym,)+ > t) dt
w,v 0 )

< (ISNIT N +ITNISIF)?,

completing the proof. O

2.8.4 Proof of Proposition 2.3.1

We require the following fact from [18, Chapter X] ,

Lemma 2.8.5 ( [18] Lemma X.1.4.). Let A, B be psd matrices. Then
A+~ =+ B+ D7 < [[BB+D7|

for every unitarily invariant norm.

Proof of Proposition 2.3.1. We first prove (2.11). Under the hypotheses of Proposition 2.3.1, we may
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strengthen Lemma 2.8.5 by scaling the identity to deduce
A _ _ 1 _
[(A+pD) ™ = (A+pD) 7 < ;II(E+MI) LE|.

Recall that the function f(t) = ﬁ is matrix monotone, so that A < B implies f(A) < f(B). As
E < ||E|I, it follows that

i - - L [IE]
JA+pD™ = (A+pn < 2 IEL
wllEN + p
Hence we have established the desired inequality.
Next we show the bound is attained when A = [A]s. Applying the Woodbury identity, we may
write

(Als + pD) ™" = Va(Ay + u) "'V + = (1 = VLVT).

1
1
Using the eigendecomposition of A = V,A,VE +V,, (A, VI | we obtain

(Als +uD™" = (A+pD) ™" = i(l = VaV) = Vas(hams + )7V
_ iVn_s(I — (Mg + ) HV
_ iv"_s (A s(Ay s+ uD) ") V.
Hence A
-~ _ s+1
(A4 D)™ = (Al + D) = 52

2.8.5 Proof Theorem 2.4.2

This result contains the analysis of the Nystrom sketch-and-solve method. We begin with Equa-
tion (2.13), which provides an error bound that compares the regularized inverse of a psd matrix A
with the regularized inverse of the randomized Nystrom approximation Anys. Since 0 < flnys <A,
we can apply Proposition 2.3.1 to obtain a deterministic bound for the discrepancy:

1E] i

" 1
[(Anys +pl) ™ — (A+pul)7H < where £ = A — Ayys.

w B+ p
The function f(t) =t/(t+ u) is concave, so we can take expectations and invoke Jensen’s inequality

to obtain
1 E|E]|

E||(Anys + pl) ™ = (A4 pl) 7t < = —— =0
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Inserting the bound Equation (2.10) on E||E|| from Corollary 2.2.3 gives

) - - 1 (3+4e’sr,(A)/p)A
El[(Auye + ul) ™ — (A+ pl)~Y| < —- % o
[(Anys + D)™ = (At ul) < S T m aee (A) /o)y

To conclude, observe that the denominator of the second fraction exceeds p + A,.
Now, let us establish Equation (2.14), the error bound for Nystrom sketch-and-solve. Introduce
the solution Z to the Nystrom sketch-and-solve problem and the solution x, to the regularized linear

system:
(Apgs +puD)io =b and (A + pl)w, = b.

We may decompose the regularized matrix as A + pul = flnys + pl + E. Subtract the two equations
in the last display to obtain
(Anys + ,U/I)(w - w*) — WTx = 0.

Rearranging to isolate the error in the solution, we have
W —w, = (flnys + pl) " Buw,.

Take the norm, apply the operator norm inequality, and use the elementary bound || (Anys +ul)71| <
p~t. We obtain

@ —wil2 _ ]
[well2 = p
Finally, take the expectation and repeat the argument used to control E|E||/p in the proof of
Theorem 2.5.1. O

2.8.6 Proof of statements for the optimal low-rank preconditioner P,

We show that P, from Section 2.5 is the best symmetric positive definite preconditioner that acts as
a multiple of the identity off V.

Lemma 2.8.6. Let P = {P: P =V,MVI + B(I —V,VT) where 3 > 0 and M € ST(R)}. With this
parametrization, define P, by setting M = ﬁ(/\s + pl) and B = 1. Then for any symmetric psd
matriz A and p > 0,

As
min rp(P~1/24, P1/2) = L T H
Pep An +

P, = argmin o (P24, P71/?). (2.29)
PeP

; (2.28)

Proof. We first prove the lefthand side of (2.28) is always at least as large as the righthand side, and
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then show the bound is attained by P,. Given P € P, we have

1
Pil/zAﬂpfl/2 = V3M71/2(As + ﬂI)Mil/ZVsT + an—s(An—s + .UI)VJ—s'

For any 1 <1,j5 < mn,

Al(P_l/QAMP_l/Q)
)\n(P—l/QAHP—lm)

/\i(P—l/QAMP—l/Q)
/\j(P—l/QAMP—l/Q)'

Ko (PTY2A,P7Y?) = >

From our expression for 1:’_1/2AMP_1/2

P~1/24,P~'/2. Hence for any P € P, the following inequality holds:

RQ(pfl/QAltpflﬂ) > Astr+
An + 1

proving (2.28). Using the definition of P,, we see

P24, PV = (Or + m)VaVT 4 VoM + p)VE
k(PP A, PTY) = s + 1)/ (A + ).

Proof of Proposition 2.5.3

44

, we see that (Agy1 + u)/7v, (A + 1)/~ are eigenvalues of

Let A = UAUT be an rank-s Nystrom approximation constructed from an arbitrary test matrix,

whose sth eigenvalue is As. Proposition 2.5.3 provides a deterministic bound on the condition number

of the regularized matrix A, after preconditioning with

1 ~
P= UM+ pD)UT + (1 -UUT).
As +

We remind the reader that this argument is completely deterministic.
First, note that the preconditioned matrix P~/24, P~/ is psd, so

Al(Pfl/QAupfl/Q)
(P24, P2

Ko(P~Y2A,P7Y?) =
Let us begin with the upper bound on the condition number. We have the decomposition

P=2A, P2 = PR (A4 u) PR 4 PTVPEPT,

(2.30)

owing to the relation A, = A+ ul + E. Recall that the error matrix E is psd, so the matrix

P~12EP~1/2 ig also psd.
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First, we bound the maximum eigenvalue. Weyl’s inequalities imply that
M(P7Y24,P7Y2) < X\ (P7Y2(A + ul)P~Y%) 4 X\ (P~Y2EP~/?).

To determine A\, (P~Y/2(A + uI)P~1/?), we write A+ uI = U(A + pI)UT + pU, UT | where U, is an
orthonormal basis for the eigenvectors orthogonal to U. From this and the definition of P~!, we
obtain.

P YV2(A+u)P~Y? = Ay + ) UUT + pULUT.

The preceding display immediately yields Al(P_l/Q(A + pul)P~1/?) = As + u. We now turn to
bounding A\, (P~'/2EP~1/2). When s < n, we have \;(P~') = 1. Therefore,

M(PTY2EPY2) = A\ (PTYE) < M(PHM(E) = M (E) = | E||.

In summary,

M(P7Y2A,P7Y2) < X+ p+ ||E|. (2.31)

For the minimum eigenvalue, we first assume that g > 0. Apply Weyl’s inequality to Equation (2.30)

to obtain to obtain

)\n(P_l/QA#P_l/Q) > )\n(P_l/Q(A-i-,uI)P_l/Q) + )\n(P—l/QEP_l/Q) (2 32)
)\n(P_l/z(A-i-MI)P_l/Z) = L. .

v

Combining Equation (2.31) and Equation (2.32), we reach

HQ(P71/2A#P71/2) < As +p+ || E|| .
I
This gives a bound for the maximum in case p > 0.
If we only have p > 0, then a different argument is required for the smallest eigenvalue. Assume
that A is positive definite, in which case As > 0. As P*1/2AuP*1/2 is symmetric positive definite we

have
1

/\1(P1/2A;1P1/2)'

A (P~Y24,P7Y2) =
Conjugating by A,l/ 2p-1/2 and using similarity, we obtain the equality

A(PY2ATTPYR) = N (AP PALY?).
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Hence it suffices to produce an upper bound for A; (A;l/zPA;I/Q). To that end, we expand
(A+pUUT) + (I - UU)T> Aul/Q)

. 1

A2 <
st h

N (A2 (A + puUT) A1)

A (AVEPA?) = ) (
1

< -
As +

+ XM <Aﬂ1/2 (1-uvuT) Au1/2>.

1

L,
An + 1

Al(A,:l/QPA,Ilﬂ) < 5\ :
st

The second inequality is Weyl’s. Since A < A, we have A + pUUT < A,. The last display simplifies

to
Putting the pieces together with Equation (2.31), we obtain
P APT) < Gt 1D (5 4 5 )
/\s + 1 )‘n + H
1 A+ A+ 2 }
D Qs+ )+ p)

I

Thus,
m2(P71/2AMP71/2) < (5\5 +u+ ||E||) min{

This formula is valid when A is positive definite or when p > 0.
We now prove the lower bound on #o(P~1/2A, P~1/2). Returning to Equation (2.30) and invoking

Weyl’s inequalities yields
M(PY2A,P7Y2) > \((PY2(A 4 ul)P™Y2) 4 M (PTY2EPTY2) > A, + .

For the smallest eigenvalue we observe that
A(P7Y2A,P7Y2) = X\ (A P7Y) < Mu(A)M(PTY) = N\, +

Where the last inequality in the preceding display follows from the identity
Ai(AB) < Aj(A)Ai(B),
which holds for symmetric positive definite matrices A and B. Combining the last two displays, we
< ko(P7V2A,PTY?).

5\s+u
An + p

obtain
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Condition numbers always exceed one, so

max { As + 'u,l} < ko(P7Y2A, P72,
An + 1

This point concludes the argument.

Proof of Lemma 2.5.4

Lemma 2.5.4 establishes the central facts about the effective dimension. First, we prove Item 1. Fix
a parameter v > 1, and set j, = max{l < j <n:\; >~yu}. We can bound the effective dimension

below by the following mechanism.

dg — J Z J Z ] . J % .

ff ]z:;)\j—‘rli jz:;)\j—’_u * )\j*‘f'/i

We have used the fact that ¢ — ¢/(1 + ¢) is increasing for ¢t > 0, Solving for j,, we determine that
Je < (L /25 )dly < (17 dg.

The last inequality depends on the definition of j,. This is the required result.

Item 2 follows from a short calculation:

_/\k+M /\k+M
Z/\ Z)\kJr,u Z)\ +u

J>k
)\k—f—,u A+ @ kAL
du < dt. —
ZA )Tk ( of )\k+u>

pdl d“ﬁ pdby
— Pt oy Zeff 1) < Eleff
ko k(k =k

The last inequality depends on the assumption that k& > d.

2.8.7 Proof of Corollary 2.5.2

This result gives a bound for the relative error d; in the iterates of PCG. Recall the standard
convergence bound for CG [161, Theorem 38.5]:

t
5 <2 (\/Hz(P_1/2AuP_1/2) - 1)
t = .

\/Hz(P_lmAuP_l/z) +1
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We conditioned on the event that {x(P~1/2A4,P~1/2) <56}. On this event, the relative error must
satisfy
t
vo6 —1
6 <2 | —=— | <2-(0.77)"
V56 + 1

Solving for ¢, we see that §; < € when t > [3.81og (1/¢)]. This concludes the proof.

2.8.8 Proof of Theorem 2.5.5

Theorem 2.5.5 establishes that with high probability Algorithm 5 terminates in a logarithmic number
of steps, the sketch size remains O(dig"), and PCG with the preconditioner constructed from the

output converges fast.

Proof. We first recall with the tolerances chosen in Theorem 2.5.5 that Algorithm 5 terminates when

the event

&={IEl <rupn{i < L}

holds. Observe that conditioned on &£, Proposition 2.5.3 yields

_ _ )\ +u+||E 2
Ko (P 1/2AP1/2) Mﬂ | ||<1+(1+11)T_1+HT
Statement 3 now follows from the above display and the standard convergence theorem for CG.

Now, if Algorithm 5 terminates with N < [log, (§/s0)] — 1 steps of sketch size doubling, then &
holds with probability 1. Statement 3 then follows by our initial observation, while statements 1 and
2 hold trivially. Hence statements 1-3 all hold if the algorithm terminates in N < [log, (§/s0)] — 1
steps.

Thus to conclude the proof, it suffices to show that if N > [log, (5/s0)], then & holds with
probability at least 1 — §, which implies that statements 1-3 hold with probability at least 1 — 4, as
above.

We now show that € holds with probability at least 1 —§ when N = [log, (§/s0)]. To see this
note that when N = [log, (5/s0)], we have s > §. Consequently, we may invoke Proposition 2.2.2
with p = f2d§m/111 + 1 and Lemma 2.5.4 to show

E[|[E]] < 3Ap +7 ZA
Jj=p
D 30Th | o2 den(07p/11) O7ps
11 p 11

3) 2 2
<3MH%JWZGLG

< .
=1 2 11 >5T“§m
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Where step (1) uses Proposition 2.2.2, step (2) uses items 1 and 2 of Lemma 2.5.4 with v = 1, and
step (3) follows from p > ng;f“. Thus,

E[IE[] < é7p.

By Markov’s inequality,
B{|E| > 7u} <.

Hence {||E|| < 7u} holds with probability at least 1 — . Furthermore, by Lemma 2.5.4 we have
{As < 67u/11} with probability 1 as A, < Ay < A,. Thus when N = [log, (5/s0)], £ holds with

probability at least 1 — §, this immediately implies statements 1 and 3. Statement 2 follows as
s = 2Ny < 21082 (3/s0) g, — 95 — 4124771 4 2,

where in the first inequality we used [2] < z + 1, this completes the proof. O

2.8.9 Proof of Proposition 2.5.7

Proposition 2.5.7 shows once s = Q (degt(74)), then with high probability ro(P~1/2A4, P~1/2) differs

from (As + @) by at most a constant.

Proof. Proposition 2.5.3 implies that

KQ(P71/2AMP71/2)— As —|—,U S ||E||
weo ),

Combining the previous display with Markov’s inequality yields

P{(nz(P—l/QAup—l/Z) . w) § ;} _ SElE]
1

+

Now, our choice of s combined with Proposition 2.2.2 and Lemma 2.5.4 implies that E[|| E||] < Tu.

’ { (”2<P-1/2AMP-1/2> S “) > Q} <s
n
+

which implies the desired claim. O

Hence we have
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Table 2.9: Ridge regression: Test set error. We report the relative error for regression tasks
and the misclassification rate for classification tasks. Nystrom PCG outperforms the Nystrom
preconditioner on nearly all the datasets.

Dataset Method Test set error
Nystrom Preconditioner 9.51%
CIFAR-10 Nystrom PCG 8.67%
Guillerm Nystrom Preconditioner 32.5%
uriermo Nystrom PCG 32.6%
Nystrom Preconditioner 0.20%
shuttle-rf Nystrom PCG 0.22%
smallnorborf Nystréom Preconditioner 57.92%
Nystrom PCG 16.14%
Nystrom Preconditioner 5.48e-3
YearMSD-rf Nystrom PCG 4.55e—3
Hicesrf Nystrom Preconditioner 3.49%
&8 Nystrom PCG 0.05%
Covtyperf Nystrém Preconditioner 20.76%
yp Nystrom PCG 9.39%

2.9 Additional numerical results

2.9.1 Ridge regression experiments

Here, we report the test error obtained on datasets considered in Section 2.6.2 and the implications
of these results.

Table 2.9 compares the test error obtained using the Nystrom PCG solution with that of a sketch-
and-solve approach we call Nystrém preconditioner, which uses P~! (the inverse of the Nystrom
preconditioner) to approximate (1/nXTX + ul)~*.

Nystrom PCG outperforms, especially on the larger datasets n > 10°, and even for datasets where
the effective dimension is small, such as Higgs-rf. Hence even in the statisical learning setting, where
one only cares about test error, solving the ridge regression problem accurately improves statistical

performance.

2.10 Adapative rank selection via a-posteriori error estima-

tion

2.10.1 Randomized powering algorithm

The pseudo-code for estimating || E|| by the randomized power method is given in Algorithm 4

The pseudocode for adaptive rank selection by a-priori error estimation is given in Algorithm 5.
The code is structured to reuse use the previously computed 2 and Y, resulting in significant
computational savings. The error ||E|| is estimated from ¢ iterations of the randomized power method

on the error matrix A — UAUT.
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Algorithm 4 Randomized Power method for estimating ||E||

1: Input: symmetric PSD matrix A € R™*™ approximate eigenvectors U, approximate eigenvalues
A, and number of power iterations q.

2: g =randn(n, 1)
C oy = 9
3 Y0 = g
4 fori=1,...,qdo
5. v=Avg —U(AU"v))
6: E=0olv
7 v = m
8: Vg < U
9: end for .
10: Output: estimate E of ||E||

2.11 Additional experimental details

Here we provide additional details on the experimental procedure and the methods we compared to.

2.11.1 Ridge regression experiments

All of the datasets used in our ridge regression experiments are classification datasets. We converted
them to regression problems by using a one-hot vector encoding. The target vector b was constructed
by setting b; = 1 if example ¢ has the first label and 0 otherwise. We did no data pre-processing
except on CIFAR-10, where we scaled the matrix by 255 so that all entries lie in [0, 1].

We now give an overview of the hyperparameters of each method. The R&T preconditioner has
only one hyperparameter: the sketch size sgr. AdalHS has five hyperparameters: p, \,, A,, pga(p),
and cgq(p). The hyperparameter p € (0,1) controls the remaining four hyperparameters, which are
set to the values recommended in [96]. For the regularization path experiments, sgr and p were
chosen by grid search to minimize the time taken to solve the linear systems over the regularization
path. We chose sgrr from the linear grid jd, where j € {1,...,8}. Additionally, we restrict j < 4 for
Guillermo as jd > n when j > 5, and hence no benefit is gained over a direct method. For AdalHS,
p was chosen from the linear grid p = j x 107! where j € {1,...,9}. We set the initial sample size
for AdalHS to s = 100 for both sets of experiments.

We reused computation as much as possible for both R&T and AdalHS, which we now detail. To
construct the R&T preconditioner, we incur a O(ndlog(n) + sgrd?) to cache the Gram matrix and
pay an O(d?) to update the preconditioner for each value of p. In the case of AdaIHS, for each value
of p we cache the sketch SA and the corresponding Gram matrix. We then use them for the next
value of 1 on the path until the adapativity criterion of the algorithm deems a new sketch necessary.
For AdalHS computing the sketch only costs O(ndlog(n)).

We now give the parameters for the random features experiments. For Shuttle-rf we used random

features corresponding to a Gaussian kernel with bandwidth parameter o = 0.75, we set u = 1078 /n.
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For smalINORB-rf we used ReLU random features with u = 6 x 107*. We selected the AdaIHS
parameter p from the same grid used for the ridge regression experiments. We also capped the sketch
size for AdalHS at sy = 10, 000.

Finally, we give the details of our implementation of Nystrom PCG. For both sets of experiments
we used Algorithm 5 initialized at s = 100, with an error tolerance of 30u, and ¢ = 5 power iterations.
To avoid trivialities, the rank of the preconditioner is capped at spmax = 0.5d for CIFAR-10 and
Smax = 0.4d for Guillermo. For the random features experiments we capped s at Spax = 2000. In the
regularization path experiments, we keep track of the latest estimate E of ||IE'||, and do not compute
a new Nystrom approximation unless Eis larger than the error tolerance for the new regularization
parameter. When we compute the new Nystrom approximation, the adaptive algorithm is initialized
with a target rank of twice the old one.

The values of hyperparameters used for all experiments are summarized in Table 2.10.

Table 2.10: Ridge regression: Experimental parameters.

ips Initial
Dataset (R&T? sketch AdalIHS rate Initial Ad?IHS Nystrom
size sketch size

rank
CIFAR-10 3d p =203 100 100
Guillermo d p =203 100 100
shuttle-rf NA p=0.1 100 100
smallNORB-rf NA p=20.3 100 100

2.11.2 ALOOCV

The datasets were chosen so that n and d are both large, the challenging regime for ALOOCV. The
first three datasets are binary classification problems, while SVHN has multiple classes. For SVHN
we created a binary classification problem by looking at the first class vs. remaining classes.

For the large scale problems the adaptive algorithm for Nystréom PCG was initialized at sqg = 500
and is capped at Spyay = 4000. We set the solve tolerances for both algorithms to 1071%. As before,

we sample 100 points randomly from each dataset.

2.11.3 Kernel ridge regression

We converted the binary classification problem to a regression problem by constructing the target
vector as follows: We assign +1 to the first class and -1 to the second class. For multi-class problems,
we do one-vs-all classification; this formulation leads to multiple right hand sides, so we use block
PCG for both methods. We did no data pre-processing except for MNIST, whose data matrix was

scaled by 255 so that its entries lie in [0, 1]. The number of random features, m,¢ from the linear grid
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mes =4 x 103 for 5 = 1,...,9. For adaptive Nystrom PCG we capped the maximum rank for the

preconditioner at Smax = |0.1n] and used a tolerance of 40 for the ratio As /mu on all datasets.

2.12 Additional numerical results

Here we include some additional numerical results not appearing in the main chapter.

2.12.1 ALOOCV

Table 2.11 contains more details about the preconditioner and preconditioned system for the large
scale ALOOCYV experiments in Section 2.6.3. The original condition number in Table 2.11 below
is estimated as follows. First we compute the top eigenvalue of the Hessian using Matlab’s eigs()

command, then we divide this by pu.

Preconditioned
. Preconditioner | Condition .
Nystrom ) condition
Dataset construction number
rank number
time(s) estimate .

estimate

revl (p=1x 107%) 1000 19.5 (0.523) 21.6 2.98 (0.081)
revl (p=1x10"8) 4000 100.6 (3.46) 5.70e+43 17.2 (0.218)
realsim (=1 x 10~%) | 3100 (1.41e+3) 82.01(2.04) 10.0 1.70 (0.2324)
realsim (=1 x 1078) 4000 108.3 (6.21) 2.13e+4 62.4 (0.945)

Table 2.11: ALOOCYV: additional details for large-scale experiments. For = 10~* the
Hessian is well-conditioned for both datasets, so there is little value to preconditioning. For yu = 1078,
the ill-conditioning of the Hessian increases significantly, making preconditioning more valuable.
Furthermore, as ALOOCYV uses Block PCG on at least several batches of data points, the cost of
constructing the preconditioner is negligible compared to the cost of solving the linear systems (see
Table 2.6 in Section 2.6.3).
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Algorithm 5 Adaptive Randomized Nystrom Approximation

1: Input: symmetric psd matrix A, initial rank s, maximum rank sy,ay, number of power iterations
for estimating F, error tolerance Tolg,,, ratio tolerance Tolgas

22Y=[1],2=][], FE=Inf and \; = Inf

3: m=Sp

4: while FE > Tolg,, and }S/u > Tolgat do

5:  Generate Gaussian test matrix g € R®*™

6: [Qo, N] = qI’(Qo, 0)

7 Yy = AQy

8: Q= [Q Qo] and Y = [Y Yo]

9: v =+/neps(norm(Y,2))

100 Y, =Y +1vQ,

11:  C = chol(QTY,)

122 B=Y,/C

13:  Compute [U, X, ~] = svd(B,0)

14: A = max{0, %2 — vI} {remove shift}

15:  E = RandomizedPowerErrEst(A, U, A, q) {estimate error}
16:  m < Sp, 8o < 289 {double rank if tolerances are not met}
17: if s¢o > Smax then

18: So = so —m {when g > Smax, reset to So = Smax}

19: M = Smax — S0
20: Generate Gaussian test matrix Qg € R™*™
21: [907 N] = q]."(Q(), 0)
22: Yo = AQq
23: Q=10 Qland Y =[Y Y]
24: v = y/neps(norm(Y, 2)) {compute final approximation and break}
25: Y, =Y +vQ,
26: C = chol(QTY))
27 B=Y,/C
28: Compute [U, X, ~] = svd(B,0)
29: A= max{0, %% — vI}
30: break
31: end if

32: end while .
33: Output: Nystrom approximation (U, A)




Chapter 3

NysADMM

3.1 Introduction
Consider the composite convex optimization problem
minimize,,cga £(Xw;b) 4+ r(w). (3.1)

We assume that ¢ and r are convex and ¢ is smooth. In machine learning, generally £ is a loss function,
r is a regularizer, X € R"*¢ is a feature matrix, and b € R" is the label or response. Throughout the

chapter we assume that a solution to (3.1) exists. A canonical example of (3.1) is the lasso problem,
N | 2
minimize §||Xw = 0|2 +l|wl1, (3.2)

where ((Xw;b) = §|
The alternating directions method of multipliers (ADMM) is a popular algorithm to solve

| Xw—b||3 and r(x) = v||w]|;. We discuss more applications of (3.1) in Section 3.3.

optimization problems of the form (3.1). However, when the matrix X is large, each iteration of
ADMM requires solving a large subproblem. For example, consider the lasso where the loss £ is
quadratic. At each iteration, ADMM solves a regularized least-squares problem at a cost of O(nd?)
flops. On the other hand, it is not necessary to solve each subproblem exactly to ensure convergence:
ADMM strategies that solve the subproblems inexactly are called inexact ADMM, and can be shown
to converge when the sequence of errors is summable [48]. Unfortunately, it can be challenging even
to satisfy this relaxed criterion. Consider again the lasso problem. At each iteration, inexact ADMM
solves the regularized least-squares subproblem (3.4) approximately, for example, using the iterative
method of conjugate gradients (CG). We call this method inexact ADMM with CG. The number of
CG iterations required to achieve accuracy € increases with the square root of the condition number
k of the regularized Hessian, O (\/Elog(f)). Alas, the condition number of large-scale data matrices

is generally high, and later iterations of inexact ADMM require high accuracy, so inexact ADMM

55
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with CG still converges too slowly to be practical.

In this work we show how to speed up inexact ADMM using preconditioned conjugate gradients
(PCQG) as a subproblem solver. We will precondition with the randomized Nystrém preconditioner
from Chapter 2. We call the resulting algorithm NysADMM (“nice ADMM?”): inexact ADMM
with PCG using randomized Nystrom preconditioning. As shown in Chapter 2, the Nystrom
preconditioner reduces the number of iterations required to solve the subproblem to e-accuracy to
O (1og(%)), independent of the condition number. To make Nystrom PCG applicable when £ is not
quadratic, NysADMM uses linearized inexact ADMM to transform the subproblem into a linear

system solve.

3.1.1 Contributions

1. We provide a general algorithmic framework for solving large scale lasso, [;-regularized logistic

regression, and SVM problems.

2. Our theory shows that at each iteration, modulo logarithmic factors, only a constant number
of matrix vector products (matvecs) are required to solve the ADMM subproblem, provided we
have constructed the preconditioner appropriately. If the loss function is quadratic, modulo

logarithmic factors, only a constant number of matvecs are required to achieve convergence.

3. We develop a practical adaptive algorithm that increases the rank until the conditions of our

theory are met, which ensures the theoretical benefits of the method can be realized in practice.

4. Even a preconditioner with lower rank often succeeds in speeding up inexact ADMM with PCG.

Our analysis is also able to explain this phenomenon.

5. Our algorithm beats standard solvers such as glmnet, SAGA, and LIBSVM on large dense
problems like lasso, logistic regression, and kernalized SVMs: it yields equally accurate solutions

and often runs 2-4 times faster.

3.1.2 Related work

Our work relies on recent advancements in RandNLA for solving regularized least squares problems
(XTX + puhw = XTb for w, given a design matrix X € R™*? righthand side b € R", and
regularization p € R, using a sketch of the design matrix A [96]. NysADMM adapts the randomized
Nystrom preconditioner from Chapter 2. Recall, these algorithms begin by forming a sketch Y = X
of X (or XT) with a random dimension reduction map Q € R4*® [109,173]. For example, 2 may be
chosen to have iid Gaussian entries. These algorithms obtain significant computational speedups
by using a sketch size s < min{n, d} and working with the sketch in place of the original matrix
to construct a preconditioner for the linear system. Chapter 2 along with the work [96] show that

these randomized preconditioners work well when the sketch size grows with the effective dimension
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(Equation (2.19)) of the Gram matrix (assuming, for [96] that we have access to a matrix square
root). As the effective dimension is never larger than d and often significantly smaller, these results
substantially improve on prior work in randomized preconditioning [114,144] that requires a sketch
size s 2 d. Many applications require even smaller sketch sizes: for example, for NysADMM, a fixed
sketch size s = 50 suffices even for extremely large problems.

We are not the first to use RandNLA to accelerate iterative optimization. [71,132] both use
iterative sketching to accelerate Newton’s method, while [32] use randomized preconditioning to
accelerate interior point methods for linear programmming. The approach taken here is closest
in spirit to [32], as we also use randomized preconditioning. However, the preconditioner used
in [32] requires the data matrix to have many more columns than rows, while ours can handle any
(sufficiently large) dimensions.

NysADMM can solve many traditional machine learning problems, such as lasso, regularized
logistic regression, and support vector machines (SVMs). In contrast, standard solvers for these
problems use a wider variety of convex optimization techniques. For example, one popular lasso
solver, glmnet [60], relies on coordinate descent (CD), while solvers for SVMs, such as LIBSVM [29],
more often use sequential minimal optimization [133], a kind of pairwise CD on the dual problem.
For regularized logistic regression, especially for [;-regularization, stochastic gradient algorithms are
most commonly used [38,151]. Other authors propose to solve lasso with ADMM [23,179]. Our
work, motivated by the ADMM quadratic programming framework of [155], is the first to accelerate
ADMM with randomized preconditioning, thereby improving on the performance of standard CD
or stochastic gradient solvers for each of these important classes of machine learning problems on
large-scale dense data. Unlike [155], our work relies on inexact ADMM and can handle non-quadratic

loss functions, which allows NysADMM to solve problems such as regularized logistic regression.

3.1.3 Organization of the chapter

Section 3.2 introduces the NysADMM algorithm. Section 3.3 lists a variety of applied problems that
can be solved by NysADMM. Section 3.4 states the theoretical guarantees for NysADMM. Section 3.5
compares NysADMM and standard optimization solvers numerically on several applied problems.

Section 4.6 summarizes the results of the chapter and discusses directions for future work.

3.1.4 Notation and preliminaries

We call a matrix psd if it is positive semidefinite. The notation a 2 b means that a > Cb for
some absolute constant C. Given a matrix H, we denote its spectral norm by || H||. We denote the
Moore-Penrose pseudoinverse of a matrix M by M*. For p > 0 and a symmetric psd matrix H, we
define H, = H + pI. We say a positive sequence {€¥}2° | is summable if Y7, e¥ < co. We denote
the Loewner ordering on the cone of symmetric psd matrices by =, that is A < B if and only if
B — A is psd.
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3.2 Algorithm

3.2.1 Inexact linearized ADMM

To solve problem (3.1), we apply the ADMM framework. Algorithm 6 presents the standard ADMM
updates.

Algorithm 6 ADMM

Input: design matrix X, response b, loss function ¢, regularization r, stepsize p

repeat
wh ! = argmin,, {{(Xw;b) + &]jw — 2* + u*||3}
ZFH1 = argmin_{r(z) + Z[lw**! — 2 + u¥||3}
Wkt = gk okt — Skt

until convergence

Output: solution w, of problem (3.1)

In each iteration, two subproblems are solved sequentially to update variables w and z. The
z-subproblem often has a closed-form solution. For example, if 7(w) = |Jw]||1, the z-subproblem is the
soft thresholding, and if r is the indicator function of a convex set C, the z-subproblem is projection
onto the set C.

There is usually no closed-form solution for the w-subproblem. Instead, it is usually solved
inaccurately by an iterative scheme, especially for large-scale applications. To simplify the subproblem,
inspired by linearized ADMM, we assume £ is twice differentiable and notice that the w update
is close to the minimum of a quadratic function given by the Taylor expansion of ¢ at the current

iterate:

@F ! = argmin,, {(w — M) TXTVU( X0 b) + %(w — M) T XTV2(AG*; 0) X (w — o) + gHw -z 4 a’“||§} .
(3.3)

Here V2¢ denotes the Hessian of £. We assume throughout the chapter that V2¢ is psd matrices, this

is a very minor assumption, and is satisfied by all the applications we consider. The solution to this

quadratic minimization may be obtained by solving the linear system

(XTV20(X0*;0) X + pHw = r* (3.4)
where 1% = p(ZF — @*) + XTV2( X0 b) X0k — XTVL(AwF;b). (3.5)

The inexact ADMM algorithm we propose solves (3.4) approximately at each iteration.
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Algorithm 7 Inexact ADMM

Input: design matrix X, response b, loss function ¢, regularization r, stepsize p, positive summable

sequence {e"}2°

repeat
find w**1 that solves (3.4) within tolerance ¥
ZkH = argmin_ {r(z) + £|@**! — 2 + a¥||3}
Gk = gk gkl _ gkt

until convergence

Output: solution w, of problem (3.1)

For a quadratic loss ¢, when Y~ , e* < 00 and under various other conditions, if optimization
problem (3.1) has an optimal solution, the {w*}2, sequence generated by Algorithm 7 converges to
the optimal solution of (3.1) [48,49]. From [23], quantity 75+ = p(2¥ — 2¥+1) can be regarded as the
dual residual and r’f‘l = @kt — 2F*1 can be viewed as the primal residual at iteration k + 1. This
suggests that we can terminate the ADMM iterations when the primal and dual residuals become
very small. The primal and dual tolerances can be chosen based on an absolute and relative criterion,
such as

Irpllz < € + emax{[|Z*[|2, |22}
Ir§ll2 < € + &<l pa” 2.

The relative criteria ¢'*! might be 1073 or 10~* in practice. The choice of absolute criteria €

depends on the scale of the variable values. More details can be found in [23].

3.2.2 Solving the w-subproblem with Nystrom PCG

To efficiently solve the linearized w-subproblem in (3.4), we apply the Nystréom PCG algorithm
(Algorithm 3) introduced in Chapter 2. Our selection of Nystrém PCG is motivated by the fact that

the Hessian matrix in (3.4) has the form:
H = XTV2(X0*;b) X

that is, the Hessian is formed from the design matrix X. As most design matrices exhibit fast spectral
decay, we expect the Hessian to enjoy approximate low-rank structure, which makes Nystrom PCG a

natural candidate for solving (3.4) efficiently.

3.2.3 NysADMM

Integrating Nystrom PCG with inexact ADMM, we obtain NysADMM, presented in Algorithm 8.
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Algorithm 8 NysADMM

Input: design matrix X, response b, loss function ¢, regularization r, stepsize p, positive summable

sequence {e"}2°

[U, A] = RandNystromApprox(XTV2(Xw°;b) X, s) {use Algorithm 13}

repeat
use Nystrom PCG (Algorithm 3) to find @**+! that solves (3.4) within tolerance *
1l = argmin, {r(z) + §||1Dk+1 —z+a*||3}
Gkl = gk gkl _ skl

until convergence

Output: solution w, of problem (3.1)

Our theory for Algorithm 8, shows that if the sketch size s > d’, then with high probability
subproblem (3.4) will be solved to e-accuracy in O (log(2)) iterations (Corollary 3.4.2). When
the loss ¢ is quadratic and the sequence of tolerances {€*}2°  is decreasing with >orco ek < oo,
NysADMM is guaranteed to converge as k — oo with only a constant number of matvecs per iteration
(Theorem 3.4.3). Table 3.1 compares the complexity of inexact ADMM with CG vs. NysADMM
for K iterations under the hypotheses of Theorem 3.4.3. NysADMM achieves a significant decrease
in runtime over inexact ADMM with CG, as the iteration complexity no longer depends on the
condition number xs.

Table 3.1: Complexity comparison for a quadratic loss with Hessian H. Here T}, is the

time to compute a matrix vector product with H, x(H,) is the condition number of x(H,), and £* is
the precision of the kth subproblem solve (3.4).

Method Complexity
Inexact ADMM " —
with CG O(Zklemmlog (Tﬂ»
O (Trvdlg) +
NysADMM
Gl b (e G )

3.2.4 AdaNysADMM

Two practical problems remain in realizing the success predicted by the theoretical analysis of Table 3.1.
These bounds are achieved by selecting the sketch size to be dg, but the effective dimension is
1) seldom known in practice, and 2) often larger than required to achieve good convergence of
NysADMM. Fortunately, a simple adaptive strategy for choosing the sketch size, inspired by [58],

can achieve the same guarantees as in Table 3.1. This strategy chooses a tolerance ¢ and doubles the
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Astp

sketch size s until the empirical condition number satisfies
As +p <

1+e 3.6
P (3.6)

Theorem 3.4.4 guarantees that (3.6) holds when s > d?; and that when (3.6) holds, the true
condition number is on the order of 1 + ¢ with high probability. We refer to (3.6) as the empirical
condition number as it provides an estimate of the true condition number of the preconditoned
system (Theorem 3.4.4).

Thus, to enjoy the guarantees of Theorem 3.4.4 in practice, we may employ the adaptive version
of NysADMM, which we call AdaNysADMM. We provide the pseudocode for AdaNysADMM in
Algorithm 9 in Section 3.8. Furthermore, as we use a Gaussian test matrix, it is possible to construct a
larger sketch from a smaller one. Hence the total computational work needed by the adaptive strategy
is not much larger than if the effective dimension were known in advance. Indeed, AdaNysADMM
differs from NysADMM only in the construction of the preconditioner. The dominant cost in
forming the precondition is computing the sketch is HS, which costs O(Tmvdlg;). As AdaNysADMM
reuses computation, the dominant complexity for constructing the Nystrém preconditioner remains
O(Tmvd?;). Consequently, the overall complexity of AdaNysADMM is the same as NysADMM in
Table 3.1.

3.3 Applications

Here we discuss various applications that can be reformulated as instances of (3.1) and solved by
Algorithm 8.

3.3.1 Elastic net

Elastic net generalizes lasso and ridge regression by adding both the /; and Iy penalty to the least
squares problem:

e 1 1
minimize || Xw = blf3 + 5 (1 = 9)[|wl + vllwl (3.7)

Parameter v > 0 interpolates between the {1 and ls penalties. NysADMM applies with £(Xw;b) =

| Xw —b||3, r(w) = £(1 —7)|lw||3 + v||w|:. The Hessian matrices for ¢ is are X7 X.

3.3.2 Regularized logistic regression

Regularized logistic regression minimizes a logistic loss function together with an l;-regularizer:

minimize — Z (bs(Xw); — log(1 + exp((Xw)i))) + v||w||x (3.8)

i
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NysADMM applies with £(Aw;b) = — >, (b;(Aw); —log(1 + exp((Aw);))) and h(w) = v|lw||1. The

~k+1

inexact ADMM update chooses w to minimize a quadratic approximation of the log-likelihood,

1
minimize 5 Z of (¢F — (Az):)* + ng —2F 4+ ak)3,

where af and ¢F depend on the current estimate #* as

1
k
a; = ~ =
2+ exp(—(Xw*):) + exp((X@*):)
L 1
bi 1+exp(—(Xwk);)

k
a;

Therefore, the solution of the xz-subproblem can be approximated by solving the linear system
(X" diag(a®)X + pw = p(z* — @") + X" diag(a®)q".

Here o* and ¢* are the vectors for af and ¢F. The Hessian matrix of £ is given by X7 diag(a*)X.

3.3.3 Support vector machine

To reformulate the SVM problem for solution with NysADMM, consider the dual SVM problem

1
minimize indiag(b)Kdiag(b)w —1"w
subject to w'b=0 (3.9)

0<w<C.

Variable w is the dual variable, b is the label or response, and C is the penalty parameter for
misclassification. For linear SVM, K = X X7 where X is the design matrix; and for nonlinear
SVM, K is the corresponding kernel matrix. The SVM problem can be reformulated as (3.1) by
setting ¢(Kw;b) = 1w diag(b) K diag(b)w — 17w and taking r to be the indicator function for convex
constraint set w’b =0, 0 <w < C. The Hessian matrix for ¢ is diag(h) K diag(b).

3.4 Convergence analysis

This section provides a convergence analysis for NysADMM. All proofs for the results in this section
may be found in Section 3.7. First we show Nystrom PCG can solve any quadratic problem in a

constant number of iterations.

Theorem 3.4.1. Let H be a symmetric positive semidefinite matriz, p > 0 and set H, =

H + pI. Suppose we construct the randomized Nystrém preconditioner with sketch size s >

8 (Vg + ,/81og(176))2. Then

rko(P~Y2H,P7Y?) <8 (3.10)
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with probability at least 1 — §.

Theorem 3.4.1 strengthens Theorem 2.5.1 from Chapter 2, which provides a sharp expectation
bound on the condition number of the preconditioned system, but gives loose high probability bounds
based on Markov’s inequality. Theorem 3.4.1 tightens this bound, showing that Nystrom PCG enjoys
an exponentially small failure probability.

As an immediate corollary, we can solve (3.4) with a few iterations of PCG using the Nystrom

preconditioner.

Corollary 3.4.2. Instate the hypotheses of Theorem 3.4.1 and let w, denote the solution of (3.4).
Then with probability at least 1 — 6, the iterates {w;}i>1 produced by Nystrém PCG on problem (3.4)

satisfy
Ihoe = @ulls oy (X - (3.11)
@]z~ PT\2 ' '
log (=T 0x 112
Thus, aftert > 1+ [log@)—‘ iterations,

l[wy — ]2 < e. (3.12)

Corollary 3.4.2 ensures that we can efficiently solve the sub-problem to the necessary accuracy at
each iteration. This result allows us to prove convergence of NysADMM in the case of the quadratic

loss.

Theorem 3.4.3. Consider the problem in (3.1) with quadratic loss {(Xw;b) = || Xw — b||3. Define
initial iterates 0°, 2° and @° € R?, stepsize p > 0, and summable tolerance sequence {5’“}2":0 CR,.
Assume at kth ADMM iteration, the norm of the righthand side of the linear system r* is bounded

by constant R for all k. Construct the Nystrom preconditioner with sketch size

vyt s (2))

N () /R
ekp

and solve problem (3.1) with NysADMM, using T* =1+ [2 log (
at the kth ADMM iteration. Then with probability at least 1 — ¢,

>—‘ . iterations for PCG

1. For all k > 0, each iterate gkl satisfies
@Y — wk ||y < ek, (3.13)

where w**1 is the exact solution of (3.4).

2. As k — oo, {wk}2, converges to a solution of the primal (3.1) and {pua*}32, converges to a
solution of the dual problem of (3.1).



CHAPTER 3. NYSADMM 64

Theorem 3.4.3 establishes convergence of NysADMM for a quadratic loss. The quadratic loss
already covers many applications of interest including the lasso, elastic-net, and SVMs. Convergence
for general convex losses is established in the follow-up work [59] by the current author along with
collaborators. [59] goes beyond merely establishing convergence, it also proves explicit convergence
rates for NysSADMM and other approximate ADMM schemes under standard regularity assumptions.

The next result makes rigorous the claims made in Section 3.2.4: it shows we can determine

whether or not we have reached the effective dimension by monitoring the empirical condition number
(As +p)/p.

Theorem 3.4.4. Suppose, for some user defined tolerance € > 0, the sketch size satisfies

2
s>8<\/d2§/6+1/810g <1§)> .

Then the empirical condition number of the Nystrom preconditioned system P~Y2H,P~Y2 satisfies

5\8 +p €
<1+ —. 3.14
<1+ (3.14)
Furthermore, with probability at least 1 — 9,
—1/2 —1/2 As+p
Ka(P H,P ) — Y <e. (3.15)

Theorem 3.4.4 shows that once the empirical condition number is sufficiently close to 1, so too
is the condition number of the preconditioned system. Hence it is possible to reach the effective
dimension by doubling the sketch size of the Nystrom approximation until the empirical condition
number falls below the desired tolerance. Theorem 3.4.4 ensures the true condition number is close
to this empirical estimate with high probability.

Theorem 3.4.4 also helps explain why sketch sizes much smaller than the effective dimension can
succeed in practice. The point is best illustrated by instantiating an explicit parameter selection in

Theorem 3.4.4, which yields the following corollary.

Corollary 3.4.5. Instate the hypotheses of Theorem 3.4.4 with ¢ = 100. Then with a sketch size of
52> dig_f) the following holds

3 100
L (As+p)/p<1+ 5.
2. With probability at least 1 — ¢,

1
Kko(P~Y2H,P~Y%) —1 - % < 100.
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Corollary 3.4.5 shows that for a coarse tolerance of ¢ = 100, a sketch size of s 2 digp suffices
to ensure that the condition number of P~*/2H,P~%/2 is no more than around 100. Two practical
observations cement the importance of this corollary. First, digp is often significantly smaller than
d, possibly by an order of magnitude or more. Second, with a condition number around 100, PCG
is likely to converge very quickly. In fact, for modest condition numbers, PCG is known to converge
much faster in practice than the theory would suggest [161]. It is only when the condition number
reaches around 103, that convergence starts to slow. Thus, Corollary 3.4.5 helps explain why it is
not necessary for the sketch size to equal the effective dimension in order for NysADMM to obtain

significant accelerations.

3.5 Numerical experiments

Table 3.2: Statistics of experiment datasets.

Name instances n  features d nonzero %
STL-10 13000 27648 96.3
CIFAR-10 60000 3073 99.7
CIFAR-10-rf 60000 60000 100.0
smallNorb-rf 24300 30000 100.0
E2006.train 16087 150348 0.8
sector 6412 55197 0.3
p53-rf 16592 20000 100.0
connect-4-rf 16087 30000 100.0
realsim-rf 72309 50000 100.0
revl-rf 20242 30000 100.0
cod-rna-rf 59535 60000 100.0

In this section, we evaluate the performance of NysADMM on different large-scale applications:
lasso, ¢1-regularized logistic regression, and SVM. For each type of problems, we compare NysADMM
with popular standard solvers. We run all experiments on a server with 128 Intel Xeon E7-4850 v4
2.10GHz CPU cores and 1056GB. We repeat every numerical experiment ten times and report the
mean solution time. We highlight the best-performing method in bold. The tolerance of NysADMM
at each iteration is chosen as the geometric mean e+ = \/W;Ts of the ADMM primal residual 7,
and dual residual 4 at the previous iteration, as in [155]. See [23] for more motivation and details.
An alternative is to choose the tolerance sequence as any decaying sequence with respect to the
righthand side norm as the number of NysADMM iteration increases, e.g., ¥ = ||r*||2/k®, where
is a predefined factor. These two strategies perform similarly; our experiments use the first strategy.

We choose a sketch size s = 50 to compute the Nystrom approximation throughout our experiments.
Inspired by Theorem 3.4.4 and Corollary 3.4.5, even if the sketch size is much smaller than the

effective dimension, NysADMM can still achieve significant acceleration in practice.
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To support experiments with standard solvers, for each problem class we use the same stopping
criterion and other parameter settings as the standard solver. These experiments use datasets
with n > 10,000 or d > 10,000 from LIBSVM [29], UCI [45], and OpenML [166], with statistics
summarized in Table 3.2. We use a random feature map [137,139] to generate features for the data
sets CIFAR-10, smallnorb, realsim, rcvl, and cod-rna, which increases both predictive performance

and problem dimension.

3.5.1 Lasso

This subsection demonstrates the performance of NysADMM to solve the standard lasso problem
(3.2). Here we compare NysADMM with three standard lasso solvers, SSNAL [103], mfIPM [55],
and glmnet [60]. SSNAL is a Newton method based solver; mfIPM is an interior point method
based solver and glmnet is a coordinate descent based solver. In practice, these three solvers and
NysADMM rely on different stopping criteria. In order to make a fair comparison, in our experiments,
the accuracy of a solution w for (3.2) is measured by the following relative Karush-Kuhn—Tucker

(KKT) residual [103]:
oo = prox 1, (1w = XT(Xw = b))

L+ [Jwf| + [[Xw — ]|

n= (3.16)

For a given tolerance €, we stop the tested algorithms when 7 < e¢. Note that stopping criterion (3.16)
is rather strong: if n < 1072 for NysADMM, then the primal and dual gaps for ADMM are < 10~%,
which suffices for most applications. Indeed, for many machine learning problems, lower bounds on
the statistical performance of the estimator [105] imply an unavoidable level of statistical error that
is greater than this optimization error for most applications. Optimizing the objective beyond the
level of statistical error [1,106] does not improve generalization. For standard lasso experiments, we

fix the regularization parameter at v = 1.

Table 3.3: Results for low precision lasso experiment.

Time for e = 107" (s)

Task NysADMM mflPM__ SSNAL  glmnet
STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 - 765 292
revl-rf 226 563 595 273
cod-rna-rf 208 976 865 324

Table 3.3 and Table 3.4 show results for lasso experiments. The average solution time for
NysADMM, mfIPM, SSNAL, and glmnet with e = 107!,1072 on different tasks are provided. Here
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Table 3.4: Results for high precision lasso experiment.

Time for e = 1072 (s)

Task NysADMM mfilPM _SSNAL glmnet
STL-10 406 812 656 831
CIFAR-10-rf 715 1317 1126 1169
smallNorb-rf 596 896 768 732
E2006.train 1657 1965 1446 2135
sector 957 1066 875 1124
realsim-rf 732 - 1035 922
revl-rf 593 853 715 736
cod-rna-rf 715 1409 1167 997

mfIPM fails to solve the realsim-rf instance since it requires n < d. For precision of ¢ = 1071,
NysADMM is faster than all other solvers and at least 3 times faster than both mfIPM and SSNAL.
For precision of ¢ = 1072, NysADMM is still faster than all other solvers for all instances except

E2006.train and sector. The results are fair since both SSNAL and mfIPM are second-order solvers

and can reach high precision. NysADMM and glmnet are first-order solvers; they reach low precision

quickly, but improve accuracy more slowly than a second order method. In practice, for large-scale

machine learning problems, a low precision solution usually suffices, as decreasing optimization error

beyond the statistical noise in the problem does not improve generalization. Further, our algorithm

achieves bigger improvements on dense datasets compared with sparse datasets, as the factors of the

Nystrom approximation are dense even for sparse problems. To further illustrate the results, we vary
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Figure 3.1: Solution times for varying tolerance ¢ on STL-10.

the value of € from 1.0 to 1073 on STL-10 task and plot the average solution time for four methods

in Figure 3.1. We can see NysADMM is as least as fast as other solvers when ¢ > 1073, and often
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twice as fast for many practical values of e.

3.5.2 [;-Regularized logistic regression

This subsection demonstrates the performance of NysADMM on [;-regularized logistic regression,
(3.8) from Section 3.3.2. We test the method on binary classification problems using the same random
feature map as in Section 3.5.1.

The [;-regularized logistic regression experiments compare NysADMM with the SAGA algorithm,
a stochastic average gradient like algorithm [38] implemented in sklearn, and the accelerated proximal
gradient (APG) algorithm [16,123,127]. For the purpose of fair comparison, all the algorithms
are stopped when the maximum relative change in the problem variable (that is, the regression
coefficients) W is less than the tolerance. The tolerance is set to 10~3; other settings match
the default settings of the sklearn logistic regression solver.

An overview of [;-regularized logistic regression experiment results are provided in Table 3.5.
NysADMM uniformly out performs SAGA, solving each problem at least twice as fast. Similarly,
NysADMM is at least twice as fast as APG on all datasets except STL-10, where it performs
comparably. In the cases of p53-rf and connect-4-rf, NysADMM runs significantly faster than its
competitors, being four times faster than SAGA and three times faster than APG. These large
performance gains are due to the size of the problem instances and their conditioning. From [38], the
convergence speed of SAGA depends on the problem instance size and condition number. Our test
cases have large instance sizes and condition numbers, which lead to slow convergence of SAGA. The
situation with APG is similar. Indeed, although ADMM and proximal gradient methods generally
have the same O(1/t)-convergence rate [16,79], NysADMM is less sensitive ill-conditioning than
APG.

Table 3.5: Results for /;-regularized logistic regression experiment.

Task NysADMM (s) SAGA (s) APG (s)
STL-10 3012 6083 2635
CIFAR-10-rf 7884 21256 17292
pH3-rf 528 2116 1880
connect-4-rf 866 4781 7365
smallnorb-rf 1808 6381 4408
revl-rf 1237 3988 2759
con-rna-rf 7528 21513 16361

3.5.3 Support vector machine

This subsection demonstrates the performance of NysADMM on kernel SVM problem for binary
classification, (3.9) from Section 3.3.3. The SVM experiments compare NysADMM with the LIBSVM



CHAPTER 3. NYSADMM 69

solver [29]. LIBSVM uses sequential minimal optimization (SMO) to solve the dual SVM problem.
We use the same stopping criteria as the LIBSVM solver, which stops the NysADMM method when
the ADMM dual gap reaches 10™# level. All SVM experiments use the RBF kernel. Table 3.6 shows

Table 3.6: Results of SVM experiment.

Task NysADMM time (s) LIBSVM time (s)
STL-10 208 11573
CIFAR-10 1636 8563
pH3-rf 291 919
connect-4-rf 7073 42762
realsim-rf 17045 52397
revl-rf 564 32848
cod-rna-rf 4942 36791

the results of SVM experiments. On these problems, NysADMM is at least 3 times faster (and up
to 58 times faster) than the LIBSVM solver. Consider problem formulation (3.9), with the RBF
kernel. The Gram matrix diag(b) Kdiag(b) is dense and approximately low rank: exactly the setting
in which NysADMM should be expected to perform well. In constrast, the SMO-type decomposition

in LIBSVM solver works better for sparse problems, as it updates only two variables at each iteration.

3.6 Conclusion

In this thesis chapter, we have developed a scalable new algorithm, NysADMM, that combines
inexact ADMM and the randomized low-rank Nystrom approximation to accelerate composite convex
optimization. We show that NysADMM exhibits strong benefits both in theory and in practice.
Our theory shows that when the Nystrom preconditioner is constructed with an appropriate rank,
NysADMM requires only a constant number of matvecs to solve the ADMM subproblem. We have
also provided an adaptive strategy for selecting the rank that possesses a similar computational
profile to the non-adaptive algorithm, and allows us to realize the theoretical benefits in practice.
Further, numerical results demonstrate that NysADMM is as least twice as fast as standard methods
on large dense lasso, regularized logistic regression, and kernalized SVM problems. More broadly,
this chapter shows the promise of recent advances in RandNLA to provide practical accelerations for

important large-scale optimization algorithms.

3.7 Proofs not appearing in the main chapter

In this section we give the proofs for the main results of the chapter: Theorem 3.4.1, Theorem 3.4.3,
and Theorem 3.4.4.
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3.7.1 Preliminaries

We start by recalling some useful background information and technical results that are useful
for proving the main theorems. In order to obtain the exponentially small failure probabilities in
Theorem 3.4.1 and Theorem 3.4.4 we take a different approach from the one in Chapter 2, which was
based off of Markov’s inequality. The proofs here are based on regularized Schur complements and
approximate matrix multiplication. Our arguments are inspired by the techniques used to establish

statistical guarantees for approximate kernel ridge regression via column sampling schemes [3,13].

Regularized Nystrom approximation: Properties

We start by recalling some important properties of the Nystrom approximation and its regularized
variant. Recall that Q € R%* denotes the test matrix from which we construct the Nystrom

approximation. Given ¢ > 0, the regularized Nystrom approximation with respect to €2 is defined as
H(Q)y = (HQ)(QTHQ + o) 1 (HQ)T. (3.17)

Furthermore, let H = VAVT be the eigendecomposition of H and define D, = H(H + ol)~! =
A(A + o)™, We shall see below that D, plays a crucial role in the analysis. The following lemma

summarizes the properties of the regularized Nystrom approximation.

Lemma 3.7.1 (Lemma 3.7.2 [3]). Let H be a symmetric psd matriz, o > 0. Define E = H — H()
and E, = H — H(Q),. Then the following hold.

1. H(Q), < H(Q) < H.
2.0 E<XE,.

3. If | DY*VT(2QaT)\WDY? — D,|| <n < 1, then

I. (3.18)

Lemma 3.7.1 relates H(Q), to H(Q?) and H. In particular, item 2 implies that |E|| < ||Es||, so

controlling F, controls F. Item 3 shows that F, can be controlled by the spectral norm of the matrix

D},/2VT§QQTVD},/2 —D,. (3.19)
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The spectral norm of (3.19) can be bounded by observing

1

E [D}/ZVTSQQTVD}/?] = (3.20)
1

DY*VTE [QQT] VDL? = (3.21)
S

DY*vTvDL? = D,. (3.22)

Thus, D;/ 2VT%QQTVD},/ ? is an unbiased estimator of D,, and may be viewed as approximating
the product of the matrices DY?VT and VDY?. Hence results from randomized linear algebra can
bound the spectral norm of this difference. In particular, it suffices to take a sketch size that scales
with the effective dimension, using results on approximate matrix multiplication in terms of stable
rank [36].

Approximate matrix multiplication in terms of the effective dimension

The condition in item 3 of Lemma 3.7.1 follows immediately from theorem 1 of [36]. Unfortunately,
the analysis in that paper does not yield explicit constants. Instead we use a special case of their

results due to [97] that provides explicit constants. Theorem 3.7.2 simplifies Theorem 5.2 in [97].

Theorem 3.7.2 (Simplified Theorem 5.2 [97]). Let ¥ € R**? be a matriz with i.i.d. N(0, 1) entries.
Given 6 > 0, and T € (0,1) it holds with probability at least 1 — ¢ that

sup (v, (DY2VTWTWVDY? — D, ) <7+ 27, (3.23)
veSd—1

inf (v, (DY2VvTwTwVDY? — D)) > 7 — 247, (3.24)
veES T

(V/Zt+/8108(16/5))°

provided s >

Setting ¥ =

corollary.

1
s

TQT, where € R?*¢ has i.i.d. N(0,1) entries, Theorem 3.7.2 yields the following

Corollary 3.7.3. Let Q € R™ be a matriz with i.i.d. N(0,1) entries. Given § >0, and 7 € (0,1)
it holds with probability at least 1 — 0 that

1
HD},NVTSQQTVD;/2 - D”H <TH2VT (3.25)

(V/@Zt+/3108(16/5))°

provided s >
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3.7.2 Proofs of Theorem 3.4.1 and Corollary 3.4.2

We start by establishing the following lemma, from which Theorem 3.4.1 follows easily.

Lemma 3.7.4. Let e >0 and E = H — H(Q). Suppose we construct a randomized Nystrém approxi-
2
mation from a standard Gaussian random matrixz  with sketch size s > 8 ( déq + 810g(%)) .
Then the event
E={lE| < 6e}, (3.26)
holds with probability at least 1 — §.

Proof. Let ©, = 5= and observe that H () = H(Q). Now the conditions of Corollary 3.7.3 are

satisfied with o :\C and 7 = 1/8. Consequently with probability at least 1 — 4,
HDWVTIQQTVDU2 - D < B + Q.
€ s N 8 2
Hence applying Lemma 3.7.1 with 0 = € and n = é + g, we obtain
|- )| < e

with probability at least 1 — §. Recalling our initial observation, we conclude the desired result. [J

Proof of Theorem 3.4.1

2
Proof. As s > 8 («/dgff + ,/SIOg(%ﬁ)) we have that |E|| < 6p with probability at least 1 —J by
Lemma 3.7.4. Furthermore, As < £ by item 3 of Lemma 2.2.1 and Lemma 2.5.4 with v = 1/7.
Combining this with Proposition 2.5.3, we conclude with probability at least 1 — §,

< As +p+ ||E||

p

1
§1+6+?§8

K}Q(P_l/QHpP_l/Z)

as desired. 0

Proof of Corollary 3.4.2

Proof. Let A= P~Y/2H,P~'/2 and condition on the event that x2(A) < 8, which holds with proba-
bility at least 1 — d. Then the same argument used in Section 2.8.7 used to establish Corollary 2.5.2

guarantees after ¢ iterations that,

”wt - UN)*”H,, HQ(A) -1 !
16, <m+ 1> (3.27)
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Theorem 3.4.1 guarantees that the Nystrom preconditioned matrix satisfies k2(A) < 8, so the above

display may be majorized as

- t—1
|lwe jw*HHp < (1> .
[, 2

Now, from the elementary inequality

VAdHp)lwllz < flwlla, <\/A(H)|wlm,,

Jwr — . 1y
W2 <o) ()

@42

we conclude

The claimed result now follows from an elementary computation.

3.7.3 Proof of Theorem 3.4.3

This proof is a natural consequence of the following theorem from [48].

Theorem 3.7.5. Consider a convex optimization problem in the primal form (P),

minimize f(w) + r(Mw),

(3.28)

(3.29)

(3.30)

where w € R, M € R™*? has full column rank. Pick any y°, 20 € R™, and p > 0, and summable

Sequences

{eF}22, € [0, 00), Zsk < 00,

k=0
oo

{*152, € [0,00), Zl/k < 00,
k=0

{AF}22 0 € (0,2), 0 < inf A < sup \F < 2.

The dual problem (D) of primal problem (P) is

maximizeyecgm — (f*(—MTy) +9"(y))-

Suppose the primal and dual ADMM iterates {w*}° ), {z*}5° ), and {y*}32, satisfy the update
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equations to within errors given by conform, for all k to
‘wkﬂ — argminw{f(w) + (y*, Mw)

p
+ 2 Mw — 2|3}

< ek,
2

k+1 (3.31)

2 —argmin, {r(z) — (y*, 2)

+ SINEMwA — 2 4 (1 - A3

<k,
2
yk+1 —_ yk +p(/\kak+1 + (1 o /\k)zk o Zk+1).

Then if (P) has a Kuhn-Tucker pair, {w*} converges to a solution of (P) and {y*} converges to a
solution of (D).

Proof of Theorem 3.4.3

Proof. Consider optimization problem (3.1) and the associated NysADMM algorithm Algorithm 8.
Suppose {@*}22 ), {ZF122,, and {@*}22, are generated by NysADMM iterations. Since £(Xw, b) is
quadratic with respect to w, the z-subproblem of (3.1) is exactly the linear system (3.4).

Let w1 be the exact solution for the w-subproblem at iteration k. For all k£ > 0, NysADMM
iterate w*t! satisfies ||[wFt! — whtl|y < eF. Let M = I, vF = 0, A¥ = 1, y* = pa* for all k,
and f(w) = £(Xw;b). By Theorem 3.7.5, {wF}22,, {Z¥}22,, and {pia*}22, satisfy condition (3.31).
Therefore, if the optimization problem (3.1) has a Kuhn-Tucker pair, {@*} converges to a solution of
(3.1) and {p@*} converges to a solution of the dual problem of (3.1).

Next, we derive the bound for the number of Nystrém PCG iterations T* required at NysADMM
iteration k. As the Hessian of £(Xw;b) is constant, we only need to compute the preconditioner
for constant linear system matrix H, = X TX 4 pI. The resulting preconditioner can then be used

for all NysADMM iterations. Since the Nystrom preconditioner is constructed with sketch size

2
s>8 (\/dé’ff + \/810g(%)) , by Corollary 3.4.2, with probability at least 1 — ¢, after

¢Iwwmm“ﬂﬁ
Ek
log(2) l

log(
T’“zl—i—{

Nystrém PCG iterations, we have ||@*T! — wk¥1||; < ¥, Recall the right-hand side of linear system
k
(3.4) 7F. The exact solution for the z-subproblem w**+1 at iteration k satisfies ||w**1|y < %. We

have

log [ ¥ AL(Hp)/pll@* 2 1 VAL H) /ol |2
" g ok 0g <Fp

log(2) = log(2) -‘ .
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Further, by assumption, as ||7*||2 is bounded by a constant R for all k, we have

log ( A1<Hp>/p> log < A1<Hp>/pR>
ekp ekp H
. . Pk,g (Wﬂ |
p

log(2) - log(2)
This gives the bound for the number of PCG iterations 7% required at NysADMM iteration & [

3.7.4 Proof of Theorem 3.4.4

Proof. By hypothesis we have s > dzg/ 6, so Lemma 2.5.4 with v = 7 yields

As SAs <

€p €p
6 42’

1
7
Thus,

As+p €

<14 —.
f+42

This gives the first statement. For the second statement we use our hypothesis on s to apply
Lemma 3.7.4 with tolerance e¢p/6. From this we conclude ||E|| < ep with probability at least 1 — 4.
Combining this with Proposition 2.5.3 yields

KQ(P_l/QHpP_l/Q) _ s T H
with probability at least 1 — §. On the other hand, condition numbers always satisfy
ko(P~YV2H,P7Y2) > 1.

Combining this with our upper bound on s gives

As
ro(PV2H, P2 - TP S (1 a9
= —¢/42.
Hence with probability at least 1 — §
As
/<;2(P_1/2HPP_1/2) _Astp <e

p



CHAPTER 3. NYSADMM 76

3.8 AdaNysADMM Algorithm

In this section we give the pseudocode for AdaNysADMM

Algorithm 9 AdaNysADMM
Input: design matrix X, response b, loss function ¢, regularization r, stepsize p, positive summable

sequence {F}2°
[U, A] = AdaptiveRandNysAppx(XTV2((Aw*: b) X, s) {use Algorithm 5}
repeat

find @w**! that solves (3.4) within tolerance ¢* by Nystrém PCG

#41 — argmin, {r(2) + 2@t — 5 + @3}

ﬂk+1 _ 1.~Lk 4 wk:+1 _ 2k+1

until convergence




Chapter 4

SketchySGD

4.1 Introduction

Modern large-scale machine learning requires stochastic optimization: evaluating the full objective or
gradient even once is too slow to be useful. Instead, stochastic gradient descent (SGD) and variants
are the methods of choice [4,37,86,117,143]. However, stochastic optimizers sacrifice stability for their
improved speed. Parameters like the learning rate are difficult to choose and important to get right,
with slow convergence or divergence looming on either side of the best parameter choice [121]. Worse,
most large-scale machine learning problems are ill-conditioned: typical condition numbers among
standard test datasets range from 10% to 108 (see Table 4.2) or even larger, resulting in painfully
slow convergence even given the optimal learning rate. This thesis chapter introduces a method,
SketchySGD, that uses a principled theory to address ill-conditioning and yields a theoretically
motivated learning rate that robustly works for modern machine learning problems. Figure 4.1
depicts the performance of stochastic optimizers using learning rates tuned for each optimizer on a
ridge regression problem with the E2006-tfidf dataset (see Section 4.5). SketchySGD improves the
objective substantially, while the other stochastic optimization methods (SGD, SVRG, SAGA, and
Katyusha) do not.

Second-order optimizers based on the Hessian, such as Newton’s method and quasi-Newton
methods, are the classic remedy for ill-conditioning. These methods converge at super-linear rates
under mild assumptions and are faster than first-order methods both in theory and in practice [24,125].
Alas, it has proved difficult to design second-order methods that can use stochastic gradients. This
deficiency limits their use in large-scale machine learning. Stochastic second-order methods using
stochastic Hessian approximations but full gradients are abundant in the literature [98,132,160].
However, a practical second-order stochastic optimizer must replace both the Hessian and gradient
by stochastic approximations. While many interesting ideas have been proposed, existing methods

require impractical conditions for convergence: for example, a batch size for the gradient and Hessian

7
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Figure 4.1: SketchySGD outperforms standard stochastic gradient optimizers, even when their
parameters are tuned for optimal performance. Each optimizer was allowed 40 full data passes.

that grows with the condition number [146], or that increases geometrically at each iteration [20].
These theoretical conditions are impossible to implement in practice. Convergence results without
extremely large or growing batch sizes have been established under interpolation, i.e., if the loss
is zero at the solution [113]. This setting is interesting for deep learning, but is unrealistic for
convex machine learning models. Moreover, most of these methods lack practical guidelines for
hyperparameter selection, making them difficult to deploy in real-world machine learning pipelines.
Altogether, the literature does not present any stochastic second-order method that can function
as a drop-in replacement for SGD, despite strong empirical evidence that — for perfectly chosen
parameters — they yield improved performance. One major contribution of this chapter is a theory
that matches how these methods are used in practice, and therefore is able to offer practical parameter
selection rules that make SketchySGD (and even some previously proposed methods) practical. We
provide a more detailed discussion of how SketchySGD compares to prior stochastic second-order
optimizers in Section 4.3.

SketchySGD accesses second-order information using only minibatch Hessian-vector products to
form a sketch, and produces a preconditioner for SGD using the sketch, which is updated only rarely
(every epoch or two). This primitive is compatible with standard practices of modern large-scale
machine learning, as it can be computed by automatic differentiation. Our major contribution is
a tighter theory that enables practical choices of parameters that makes SketchySGD a drop-in
replacement for SGD and variants that works out-of-the-box, without tuning, across a wide variety
of problem instances.

How? A standard theoretical argument in convex optimization shows that the learning rate

in a gradient method should be set as the inverse of the smoothness parameter of the objective
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Algorithm 10 SketchySGD (Practical version)

Input: initialization wy, hvp oracle Op, ranks {r;}, regularization p, preconditioner update
frequency u, stochastic gradient batch size by, stochastic Hessian batch sizes {bp, }
for k=0,1,....m—1do

Sample a batch By,

Compute stochastic gradient gp, (wy)

if £ =0 (mod u) then {Update preconditioner}

Set j=j5+1

Sample a batch S; {155] = bn, }
® = randn(p, ;) {Gaussian test matrix}
@ = qr_econ (D)

Compute sketch Y = Hg, (wy)Q {r calls to OHsj}

[‘A/JX] = RandNysApprox(Y, Q, rj) A

n; = get,learning,rate(OHsj VA p)

end if

Compute v, = (f]gj + pI)"tgp, (wy) via (4.5)

W1 = W — 1V {Update parameters}
end for

to guarantee convergence [24,124]. This choice generally results in a tiny stepsize and very slow
convergence. However, in the context of SketchySGD, the preconditioned smoothness constant is
generally around 1, and so its inverse provides a reasonable learning rate. Moreover, it is easy
to estimate, again using minibatch Hessian-vector products to measure the largest eigenvalue of a
preconditioned minibatch Hessian.

Theoretically, we establish SketchySGD converges to a small ball around the minimum on for
both smooth convex functions and smooth and strongly convex functions, which suffices for good
test error [1,78,105]. By appealing to the modern theory of SGD for finite-sum optimization [72] in
our analysis, we avoid vacuous or increasing batchsize requirements for the gradient. As a corollary
of our theory, we obtain that SketchySGD converges linearly to the optimum whenever the model
interpolates the data, recovering the result of [113]. In addition, when the objective is quadratic, we
show that the number of iterations SketchySGD requires to reach an e-suboptimal solution improves
upon that of SGD.

Numerical experiments verify that SketchySGD yields comparable or superior performance to
SGD, SAGA, SVRG, stochastic L-BFGS [116], and loopless Katyusha [94] equipped with tuned hy-
perparameters that attain their best performance. Experiments also demonstrate that SketchySGD’s
default hyperparameters, including the rank of the preconditioner and the frequency at which it is

updated, work well across a wide range of datasets.

4.1.1 SketchySGD
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SketchySGD finds w € R? to minimize the (possibly non-convex) empirical risk

minimize f(w) := Z fi(w), (4.1)
given access to a gradient oracle for each f;. SketchySGD is formally presented as Algorithm 12.
SketchySGD tracks two different sets of indices: k, which counts the number of total iterations, and
j, which counts the number of (less frequent) preconditioner updates. SketchySGD updates the
preconditioner (every u iterations) by sampling a minibatch S; and forming a low-rank H s5; using
Hessian vector products with the minibatch Hessian Hg, evaluated at the current iterate wy. Given
the Hessian approximation, it uses H s; + pl as a preconditioner, where p > 0 is a regularization

parameter. Subsequent iterates are then computed as
Wg+1 = WE — Uj(ﬁsj + /’1.)71913,c (wg), (4.2)

where gp, (wy) is the minibatch stochastic gradient and 7; is the learning rate, which is automatically
determined by the algorithm.

The SketchySGD update may be interpreted as a preconditioned stochastic gradient step with
Levenberg-Marquardt regularization [101,108]. Indeed, let P; = H s; + pI and define the precondi-
tioned function fp,(z) = f (P-fl/ 2,2), which represents f as a function of the preconditioned variable

j
z € RP. Then (4.2) is equivalent to !

N —-1/2
Ze41 = 2k — 9P, (2k),  Wry1 = P P,

where §p, (1) is the minibatch stochastic gradient as a function of z. Thus, SketchySGD first takes

a step of SGD in preconditioned space and then maps back to the original space. As preconditioning

induces more favorable geometry, SketchySGD chooses better search directions and uses a stepsize

adapted to the (more isotropic) preconditioned curvature. Hence SketchySGD makes more progress

than SGD to ultimately converge faster.

Contributions

1. We develop a new stochastic second-order method that is fast and generalizes well by accessing

only a subsampled Hessian and stochastic gradient.

2. We devise an heuristic (but well-motivated) automated learning rate for this algorithm that
works well in both ridge and logistic regression. More broadly, we present default settings for

all hyperparameters of SketchySGD, which allow it to work out-of-the-box.

1See Section 4.8.1 for a proof.
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3. We show that SketchySGD with a fixed learning rate converges to a small ball about the
minimum for smooth and convex, and smooth and strongly convex objectives. Additionally,
we show SketchySGD converges at a faster rate than SGD for ill-conditioned least-squares

problems. We verify this improved convergence in numerical experiments.

4. We present experiments showing that SketchySGD with its default hyperparameters can match
or outperform popular stochastic first- and second-order methods and randomized least-squares

solvers on ridge and logistic regression problems.

5. We present proof-of-concept experiments on tabular deep learning, which show
SketchySGD scales well and is competitive with other stochastic second-order optimizers in

deep learning, potentially providing an avenue for interesting future research.

4.1.2 Roadmap

Section 4.2 describes the SketchySGD algorithm in detail, explaining how to compute H, s, and the
update in (4.2) efficiently. Section 4.3 surveys previous work on stochastic second-order methods,
particularly in the context of machine learning. Section 4.4 establishes convergence of SketchySGD
in convex machine learning problems. Section 4.5 provides numerical experiments showing the

superiority of SketchySGD relative to competing optimizers.

4.1.3 Notation

Throughout the chapter By and S; denote subsets of {1,...,n} that are sampled independently and

uniformly without replacement. The corresponding stochastic gradient and minibatch Hessian are

given by
1 2
)= - 3 0w Ly
€By, h; i€S;
where by, = |Bg|, bn; = |S;|. For shorthand, we often omit the dependence upon w and simply

write gp, and Hg,. We also define H(w) as the Hessian of the objective f at w. Given w € RP, we
define M (w) = maxi<;<p ||V fi(w)| and G(w) = maxi<i<n, ||V fi(w)|. Given any 8 > 0, we use the
notation H g]_ to denote Hg, + BI. We abbreviate positive-semidefinite as psd, and positive-definite
as pd. We say f is L-smooth if H(w) < LI for all w € RP. We say f is u-strongly convex if
pul < H(w) for all w € RP. For L-smooth and p-strongly convex f, we define the condition number
k= L/p. We denote the Loewner order on the convex cone of psd matrices by <, where A < B
means B — A is psd. Given a psd matrix A € RP*P| we enumerate its eigenvalues in descending
order, A1(A4) > Xg(A) > --- > X,(A). Throughout the chapter || - || stands for the usual 2-norm for

vectors and operator norm for matrices. For any matrix A € RP*P and u,v € RP, ||[v|%} = vT Av,
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and (u,v) 4 = u? Av. Finally given a psd matrix A and 3 > 0 we define the effective dimension by
de(A) = tr(A(A + BI)~1), which provides a smoothed measure of the eigenvalues greater than or
equal to .

4.2 SketchySGD: efficient implementation and hyperparame-

ter selection

We now formally describe SketchySGD (Algorithm 12) and its efficient implementation.

Hessian vector product oracle SketchySGD relies on one main computational primitive, a
(minibatch) Hessian vector product (hvp) oracle, to compute a low-rank approximation of the
(minibatch) Hessian. Access to such an oracle naturally arises in machine learning problems. In
the case of generalized linear models (GLMs), the Hessian is given by H(w) = 1 X7 D(w)X, where
X € R™*? ig the data matrix and D € R™*" is a diagonal matrix. Accordingly, an hvp between
Hg. (w) and v € R? is given by

J

Hg. (w)v = % 1;& di(w)z; (z]v).

For more complicated losses, an hvp can be computed by automatic differentiation (AD) [130]. The
general cost of 7 hvps with Hg, (w) is O(by,pr). In contrast, explicitly instantiating a Hessian entails
a heavy O(p?) storage and O(np?) computational cost. Further computational gains can be made
when the subsampled Hessian enjoys more structure, such as sparsity. If Hg, (w) has s-sparse rows
then the complexity of r hvps enjoys a significant reduction from O(by,pr) to O(by,sr). Hence,

computing hvps with Hg, (w) is extremely cheap in the sparse setting.

Randomized low-rank approximation The hvp primitive allows for efficient randomized low-
rank approximation to the minibatch Hessian by sketching. Sketching reduces the cost of fundamental
numerical linear algebra operations without much loss in accuracy [109,173] by computing the quantity
of interest from a sketch, or randomized linear image, of a matrix. In particular, sketching enables
efficient computation of a near-optimal low-rank approximation to Hs, [35,77,165].

SketchySGD computes a sketch of the subsampled Hessian using hvps and returns a randomized
low-rank approximation H. s, of Hg, in the form of an eigendecomposition VAVT, where V € RP*"
and A € R™". Similar to the preceding chapters, we use the randomized Nystrom approximation,
following the stable implementation in [164]. The resulting algorithm RandNysApprox appears in
Section 4.7. The cost of forming the Nystrom approximation is O(bp,;pr +pr?), as we need to perform

r minibatch hvps to compute the sketch, and we must perform a skinny SVD at a cost of O(pr?). The
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procedure is extremely cheap, as we find empirically we can take r to be 10 or less, so constructing

the low-rank approximation has negligible cost.

Remark 4.2.1. If the objective for f includes an ly-regularizer -y, so that the subsampled Hessian has

the form Hg, (w) = ﬁ > ies, V2 f;(w) +~I, we do not include + in the computation of the sketch in
J J

Algorithm 12. The sketch is only computed using minibatch hvps with i Dic s V2fi(w).

Setting the learning rate SketchySGD automatically selects the learning rate n whenever it
updates the preconditioner. The learning rate update rule is inspired by the analysis of gradient
descent (GD) on smooth convex functions, which shows GD converges for a fixed learning rate
n = 1/L, where L is the smoothness constant. In the preconditioned setting, L is replaced by Lp,
its preconditioned analogue. SketchySGD approximates the ideal learning rate 1/Lp by setting the

learning rate as

(07

M ((Hs, + pI)=V/2H: (w;)(Hs, + pI)=1/2)]

TSketchySGD = (4.3)

where S’ is a fresh minibatch that is sampled independently of S}, and « is scaling factor whose
default value is 1/2. The following logic provides intuition for this choice: if f has a Lipschitz Hessian,
then

A1 ((ﬁsj + p[)il/QHS/(’wj)(fAISj + p[)71/2)

(1) . B . -1/2 (2) 3 loc
~ M ((Hs, +pl) " PH(wy)(Hs, +pI)) < 1+ R Lgo(wy),

where ¢ € (0,1), and LIISC(w) is the local preconditioned smoothness constant in some appropriately
sized ball centered about w;. Here (1) is due to Lemma 4.4.8, (2) follows from Proposition 4.4.9, and
(3) follows f having a Lipschitz Hessian. Hence SketchySGD is expected to work well as long as the
local quadratic model at w; provides an accurate description of the curvature. Moreover, this step
size Nsketenysap = O(1) is much larger (in the preconditioned space) than the standard step size of
1/L (in the original space) for an ill-conditioned problem, and should allow faster convergence to the
minimum. These predictions are verified experimentally in Section 4.5.

Crucially, our proposed learning rate can be efficiently computed via matvecs with Hg, and
(ﬁ s; +pl )_1/ 2 using techniques from randomized linear algebra, such as randomized powering and
the randomized Lanczos method [95,109]. As an example, we show how to compute the learning
rate using randomized powering in Algorithm 11. Note for any vector v, (fISj + pI)~Y2y can be

computed efficiently via the formula

. I -1/2 1 N
—1/2, _ T _ OOT
(s, + pI) 20 =V (A + pI) VT + \/ﬁ(v VU Tw). (4.4)
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Algorithm 11 get_learning rate

Input: hvp oracle Op, Nystrom approximation factors V, A, regularization p, maximum number
of iterations ¢

z = randn(p, 1)

yo = /|||l

fort=1,...,q9do

) -1/2
Compute v = (Hsj + p[) Yio1 {Use (4.4)}
Compute v' = Hgiv by calling oracle Oy, {S’ is a fresh minibatch}
. ~1/2
Compute y; = (HS]. + pI) v’ {Use (4.4)}
Ai = yﬁlyi
i = vi/ lwill
end for
Set 1= a/A, {Default v is 1/2}
Output: 7

Computing the SketchySGD update (4.2) fast Given the rank-r approximation ﬁsj =VAVT
to the minibatch Hessian Hy;, the main cost of SketchySGD relative to standard SGD is computing
the search direction vy, = (H. s, + pI)"'gp,. This (parallelizable) computation requires O(pr) flops,

by the matrix inversion lemma [80]:
NN -1 . T 1 oA
v =V (A + pI) Vv 9B, T+ ;(gBk -Vv gBk)' (45)

The SketchySGD preconditioner is easy to use, fast to compute, and allows SketchySGD to scale to

massive problem instances.

Default parameters for Algorithm 12 We recommend setting the ranks {r;} to a constant
value of 10, the regularization p = 1073 L, and the stochastic Hessian batch sizes {bn,} to a constant
value of L\/nTrJ, where ny, is the size of the training set. When the Hessian is constant, i.e. as in
least-squares/ridge-regression, we recommend using the preconditioner throughout the optimization,

which corresponds to u = co. In settings where the Hessian is not constant, we recommend setting

U= HZ—‘ , which corresponds to updating the preconditioner after each pass through the training
set.

4.3 Comparison to previous work

Here we review prior work on stochastic second-order methods, with particular emphasis on those

developed for convex optimization problems, which is the main focus of this chapter.
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Stochastic second-order methods for convex optimization Many authors have developed
stochastic second-order methods for large-scale machine learning. Broadly, these schemes can
be grouped by whether they use stochastic approximations to both the Hessian and gradient or
just a stochastic approximation to the Hessian. Stochastic second-order methods that use exact
gradients with a stochastic Hessian approximation constructed via sketching or subsampling include
[17,25,30,50,71,132,177,178]. Methods falling into the second group include [20,21,113,116, 146].

Arguably, the most common strategy employed by stochastic second-order methods is to subsample
the Hessian as well as the gradient. These methods either directly apply the inverse of the subsampled
Hessian to the stochastic gradient [20,113,146], or they do an L-BFGS-style update step with the
subsampled Hessian [21,113,116]. However, the theory underlying these methods requires large or
growing gradient batch sizes [20,21,146], periodic full gradient computation [116], or interpolation [113],
which are unrealistic assumptions for large-scale convex problems. Further, many of these methods
lack practical guidelines for setting hyperparameters such as batch sizes and learning rate, leading to
the same tuning issues that plague stochastic first-order methods.

SketchySGD improves on many of these stochastic second-order methods by providing principled
guidelines for selecting hyperparameters and requiring only a modest, constant batch size. Table 4.1
compares SketchySGD with a representative subset of stochastic second-order methods on gradient
and Hesssian batch sizes, and iteration complexity required to reach a fized suboptimality € > 0.
Notice that SketchySGD is the only method that allows computing the gradient with a small constant
batch size! Hence SketchySGD empowers the user to select the gradient batch size that meets their
computational constraints. Although for fixed-suboptimality €, SketchySGD only converges at rate
of O (log(1/€)/e), this is often sufficient for machine learning optimization, as it is well-known that
high-precision solutions do not improve generalization [1,22,105]. Moreover, most of the methods
that achieve e-suboptimality in O(log(1/¢)) iterations require full gradients, which result in costly
iterations when n and p are large. In addition to expensive iterations, full gradient methods can also be
much slower in yielding a model with good generalization error [5]. Thus, despite converging linearly
to the minimum, full gradient methods are expensive and can be slow to reach good generalization
error.

SketchySGD also generalizes subsampled Newton methods; by letting the rank parameter r; —
rank(Hsg;) < p, SketchySGD reproduces the algorithm of [20,113,146]. This follows as the error in the
randomized Nystrém approximation is identically zero when r; = rank(Hy, ), so that H s, = Hs; [164].
Using a full batch gradient b, = n (and a regularized exact low-rank approximation to the subsampled
Hessian), SketchySGD reproduces the method of [50]. In particular, these methods are made practical

by this work’s analysis and practical parameter selections.

Stochastic second-order methods for non-convex optimization In the past decade, there
has been a surge of interest in stochastic second-order methods for non-convex optimization, primarily

driven by deep learning. Similar to the convex setting, many of these methods are based on
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Table 4.1: Comparison of stochastic 2nd-order methods. Fix ¢ > 0, and suppose f is of the
form (4.1), and is strongly convex. This table compares the required gradient and Hessian batch sizes
of various stochastic second-order methods, and the number of iterations required to output a point
satisfying f(w) — f(w,) < e. Here {y, ¢ € (0,1), while G(w), M(w), and & are as in Section 4.1.3.
7P(H(w)) denotes the p-dissimilarity, which is defined in Definition 4.4.5, and o2 represents the
variance of the gradient at the optimum (see Proposition 4.4.10). The p-dissimilarity offers the
tightest characterization of the required Hessian minibatch size required to ensure a non-trivial
approximation of H”. In many interesting settings, it is much smaller than n; see Proposition 4.4.7
and the corresponding discussion.

Gradient

Method f Hessian batch size Iteration complexity
batch size
Newton Sketch [98,132] Full Full O (k% log(1/€))
Subsampled Newton A M(w)/p 2
(Full gradients) [146,177] Full © ( ¢2 ) O (x*log(1/e))
Subsampled Newton B B
(Stochastic o (G(w)2/g§) o (%) O(x2 log(1/€))
gradients) [146] ]
Subsampled Newton A M(w)/Xpyq (H(w)) 2
(Low-rank) [50,177] Full O (FER A ) O (x*log(1/e))
Full evaluation
SLBFGS [116] every epoch bn O (k?log(1/€))
SketchySGD ~ c o2/ (vpm)
(Algorithm 12) by o (TP(H(U’))/Cz) o ([Tiﬁ + £ log(1/¢€)

subsampling the Hessian, which is then combined with cubic regularization [93,162,174] or trust
region methods [145,176]. Taking a more general perspective, [15,19] have proposed a broad
stochastic model-based framework for trust-region methods that only require the gradient and
Hessian approximations to satisfy certain error bounds. Thus, even biased approximations to
the gradient and Hessian are allowed in their framework. The framework has also been useful in
the development of stochastic line search methods [85,129] and adaptive stochastic second-order
methods [150]. Although all these methods come with strong theoretical guarantees, they have
not proven popular in deep learning, due to subproblems that are expensive to solve. To maintain
computational tractability, most stochastic second-order methods designed for deep learning forgo
theoretical guarantees in favor of scalability and good empirical performance. Popular stochastic
second-order optimizers in deep learning include K-FAC [74], Shampoo [75], and AdaHessian [175].
Despite recent advances in stochastic second-order methods for deep learning, the advantage of
stochastic second-order methods over SGD and its variants is unclear, so stochastic first-order

methods have remained the most popular optimization algorithms for deep learning.

4.4 Theory

In this section we present our main convergence theorems for SketchySGD. As mentioned in
the prequel, we do not directly analyze Algorithm 10, but a slightly modified version, which we
present in Algorithm 12. The are two differences between Algorithm 10 and Algorithm 12. First,
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Algorithm 12 SketchySGD (Theoretical version)

Input: initialization wy, learning rate 7, hvp oracle O, ranks {r;}, regularization p, preconditioner
update frequency u, stochastic gradient batch size by, stochastic Hessian batch sizes {by,; }, number
of inner iterations m
for s=0,1,2,... do
for k=0,1,2,....m—1do
Sample a batch B,(j)
Compute stochastic gradient 9p© (w,(cs))
if ms+ k=0 (mod u) then
Set j=47+1
Sample a batch S} {IS;] = bn, }
® = randn(p, ;) {Gaussian test matrix}
@ = qr_econ (D)
Compute sketch Y = Hg, (w)Q {r calls to OHsj}
[V, A] = RandNysApprox(Y, Q,r;)
end if
Compute v,(f) = (I:IS]. —|—pI)_1gBl(:>(w,(€S)) via (4.5)

w;(:ﬁl = w,(f) — 777),(:) {Update parameters}

end for
Set w(s-&-l) — % E;gn:_ol w](:)'
end for

Algorithm 10 uses an adaptive learning rate strategy, while Algorithm 12 uses a fixed learned rate.
Second, Algorithm 12 breaks the optimization into stages involving periodic averaging. At the end of
each stage, Algorithm 12 sets the initial iterate for the next stage to be the average of the iterates
from the previous stage. In this sense, Algorithm 12 resembles the SVRG algorithm of [86], except
there is no full gradient computation. Just as with SVRG, the addition of averaging is needed
purely to facilitate analysis; in practice the periodic averaging in Algorithm 12 yields no benefits.
We recommend always running Algorithm 10 in practice, which is the version we use for all of our

experiments (Section 4.5).

4.4.1 Assumptions

We show convergence of SketchySGD when f is smooth (Assumption 4.4.1) and strongly convex
(Assumption 4.4.2).

Assumption 4.4.1 (Differentiability and smoothness). The function f is twice differentiable and

L-smooth. Further, each f; is L;-smooth with L; < L.y for every i =1,...,n.

Assumption 4.4.2 (Strong convexity). The function f is p-strongly convex for some p > 0.
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4.4.2 Quadratic regularity

Our analysis rests on the idea of relative upper and lower quadratic regularity. This is a generalization
of upper and lower quadratic regularity, which was recently introduced by the authors in [56], and

refines the ideas of relative convexity and relative smoothness introduced in [71].

Definition 4.4.3 (Relative quadratic regularity). Let f be a twice differentiable function and
A(w) : R? — St (R). Then f is said to be relatively upper quadratically regular with respect to A,
if for all w,w’, w"” € RP there exists 0 < ~,, < oo, such that

fw') < flw) + (g(w),w" —w) + %ullw/ — W[ (- (4.6)

Similarly, f is said is to be relatively lower quadratically regular, if for all w,w’, w” € RP there exists

0 < ¢ < 00, such that
,
') = f(w) + (g(w), 0’ — w) + ' —wlm)- (4.7)

We say f is relatively quadratically regular with respect to A if v, < oo and ~, > 0.

When A(w) = H(w), the Hessian of f, relative quadratic regularity reduces to quadratic regularity
from [56]. Quadratic regularity extends ideas from [71], by having the Hessian be evaluated at a
point w” # w in (4.6)—(4.7). This extension, while simple in nature, is essential for establishing
convergence under lazy preconditioner updates.

An important thing to note about relative quadratic regularity is it holds for useful settings of A,

under standard hypotheses, as shown by the following lemma.

Lemma 4.4.4 (Smoothness and strong convexity implies quadratic regularity). Let h : C — R,

where C is a closed conver subset of RP. Then the following items hold

1. If h is twice differentiable and L-smooth, then for any p > 0, f is relatively upper quadratically
reqular with respect to V2h(w) + pl.

2. If h is twice differentiable, L-smooth, and p-strongly convex, then h is relatively quadratically

regular with respect to V2h(w).

A proof of Lemma 4.4.4 may be found in Section 4.8.2. Importantly, (4.6) and (4.7) hold with
non-vacuous values of v, and 7,. In the case of least-squares v, = 7 = 1. More generally, for
strongly convex generalized linear models, it can be shown when A(-) = H(-), that 7, and ~, are
independent of the condition number of the data matrix [56], similar to the result of [71] for relative
smoothness and relative convexity. Thus, for many popular machine learning problems, the ratio

Yu/7e is independent of the conditioning of the data.
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4.4.3 Quality of SketchySGD preconditioner
To control the batch size used to form the subsampled Hessian, we introduce p-dissimilarity.

Definition 4.4.5 (p-dissimilarity). Let H(w) be the Hessian at w. The p-dissimilarity is

o (H(w)) = max Ay ((H(w) + pD) AV fi(w) + pD)(H(w) + p)~1/2).

p-dissimilarity may be viewed as an analogue of coherence from compressed sensing and low-rank
matrix completion [26,27]. Similar to how the coherence parameter measures the uniformity of the
rows of a matrix, 7°(H (w)) measures how uniform the curvature of the sample {V?f;(w)}1<i<n
is. Intuitively, the more uniform the curvature, the better the sample average H(w) captures the
curvature of each individual Hessian, which corresponds to smaller 7°(H (w)). On the other hand, if
the curvature is highly non-uniform, curvature information of certain individual Hessians will be in
disagreement with that of H(w), leading to a large value of 77 (H (w)).

The following lemma provides an upper bound on the p-dissimilarity. In particular, it shows that

the p-dissimilarity never exceeds n. The proof may be found in Section 4.8.3.

Lemma 4.4.6 (p-dissimilarity never exceeds n). For any p > 0 and w € RP, the following inequality
holds

7 (H(w)) < min {n W} |

where M (w) = max<j<n M (V?fi(w)).

Lemma 4.4.6 provides a worst-case bound on the p-dissimilarity—if the curvature of the sample
is highly non-uniform or p is very small, then the p-dissimilarity can be large as n. However,
Lemma 4.4.6 neglects the fact that in machine learning, the f;’s are often similar to one another, so
7P (H (w)) ought to be much smaller than n.

Clearly, for arbitrary data distributions, the p-dissimilarity can be large. The following proposition
shows when f is a GLM, and the data satisfies an appropriate sub-Gaussian condition, the p-

dissimilarity does not exceed the p-effective dimension of the population Hessian.

Proposition 4.4.7 (p-dissimilarity is small for GLMs in the machine learning setting). Let £ :
R — R be a smooth and convez loss, and define f(w) = L 37" | fi(w) where fi(w) = {(z]w). Fiz
w € RP. Assume x; are drawn i.i.d. from some unknown distribution P(x) for i € {1,...,n}.
Let Hoo(w) = Epp[l” (xTw)zzT] = 0 be the population Hessian matriz, and set d’q(Hoo(w)) =

max{dl;(Hoo(w)),1}. Suppose for some constant v the following conditions hold:
i. The random vector z = Hoo (w)™V/2\/0"(xTw)z is v sub-Gaussian.

ii. 1 = Cdl(Hoe (w)) log (%) log (4 z0).
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Then with probability at least 1 — 9,

P (H(w)) = O (JgH(Hoo(w)) log (%)) ,

The proof of Proposition 4.4.7 is given in Section 4.8.4, and is based on showing the p-dissimlarity
is well-behaved at the population level, and that for large enough n, the empirical Hessian concentrates
around the population Hessian.

Proposition 4.4.7 shows if f is a GLM, then for large datasets, 7°(H(w)) = O (d%4(Hoo (w))) with
high probability. When the eigenvalues of Ho(w) decay rapidly, the effective dimension dfg(Hoo(w))
should be smaller than (M (w) + p)/(p + ), so Proposition 4.4.7 yields a stronger bound than
Lemma 4.4.6. For example, when the eigenvalues of H.(w) decay at a sufficiently fast polynomial
rate, it is easily verified that d’g(Heo(w)) = O(1/\/p) [13]. Consequently 7°(H(w)) = O(1/,/p),
which is a significant improvement over the O(1/p) bound of Lemma 4.4.6 when p is small. This is
crucial, for it is desirable to set p small, as this leads to a smaller preconditioned condition number,
see Proposition 4.4.9. As polynomial (or faster) decay of the eigenvalues values is common in machine

learning problems [39], 7 (H (w)) will typically be much smaller then O(1/p).

Lemma 4.4.8 (Closeness in Loewner ordering between H(w) and H?(w)). Let ¢ € (0,1), w € RP |

TP (H (w)) log e“(H(w))

and p > 0. Construct Hg with batch size b, = O Then with probability at

least 1 — 0
(1= QHg(w) = H(w) = (1 + )Hg(w).

The proof of Lemma 4.4.8 is provided in Section 4.8.5. Lemma 4.4.8 refines prior analyses such
s [177] (which itself refines the analysis of [146]), where b, depends upon (M(w) + p)/(u + p),
which Lemma 4.4.6 shows is always larger than 7°(H (w)). Hence, the dependence upon 77 (H (w))
in Lemma 4.4.8 leads to a tighter bound on the required Hessian batch size. More importantly,
Lemma 4.4.8 and the idealized setting of Proposition 4.4.7 help show why algorithms using minibatch
Hessians with small batchsizes are able to succeed, a phenomenon that prior worst-case theory
is unable to explain. As a concrete example, adopt the setting of Proposition 4.4.7, assume fast
cigenvalue decay of the Hessian, and set p = O(1/n). Then Lemma 4.4.8 gives by, = O(\/n),
whereas prior analysis based on (M (w) + p)/(u + p) yields a vacuous batch size of b, = O(n). Thus,
Lemma 4.4.8 supports taking batch sizes much smaller than n. Motivated by this discussion, we
recommend a default batch size of by, = \/n, which leads to excellent performance in practice; see
Section 4.5 for numerical evidence.
Utilizing our results on subsampling and ideas from randomized low-rank approximation, we
can establish the following result, which quantifies how the SketchySGD preconditioner reduces the

condition number.
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Proposition 4.4.9 (Closeness in Loewner ordering between H(w) and . Let ¢ €(0,1) and

7'P(H(w))log cff(H(W))
w € RP. Construct Hg(w) with batch size by, = O o St e

low-rank approzimation Hs to Hg(w) with rank r = (’)(dcp(Hs ) +log(%)). Then with probability
at least 1 — 0,

(1-20) HS < H(w) < (14 ¢)HE. (4.8)

1+p/n

The proof of this proposition is given in Section 4.8.6. Proposition 4.4.9 shows that with high
probability, the SketchySGD preconditioner reduces the conditioner number from L/u to (1 + p/u),
which yields an L/p improvement over the original value. The proposition reveals a natural trade-off
between eliminating dependence upon p and the size of by,: as p decreases to p (and the preconditioned
condition number becomes smaller), the batch size must increase.

In practice, we have found that a fixed value of p = 1073 L yields excellent performance for convex
problems. Numerical results showing how the SketchySGD preconditioner improves the conditioning
of the Hessian throughout the optimization trajectory are presented in Figure 4.12.

Proposition 4.4.9 requires the rank of ng to satisfy 7; = O (dgg(ng (wj)), which ensures
||H5j — Hs,|| < (p holds with high probability (Lemma 3.7.4) so that the approximate Hessian

matches the subsampled Hessian up to the level of the regularization p.

4.4.4 Controlling the variance of the preconditioned stochastic gradient

To establish convergence of SketchySGD, we must control the second moment of the preconditioned
minibatch stochastic gradient. Recall the usual approach for minibatch SGD. In prior work, [72]
showed that when each f; is smooth and convex, the minibatch stochastic gradient of f satisfies the

following expected smoothness condition:

Bllga(w) - ga(w.)|* < 26(7(w) - f(w.), (1.9
Bllgn(w)|? < 2£(7(w) - fw.)) +20%, (1.10)
=BT e o = iy 2 IV (a.11)

Building on the analysis of [72], we prove the following proposition, which directly bounds the

second moment of the preconditioned stochastic gradient.

Proposition 4.4.10 (Preconditioned expected smoothness and gradient variance). Suppose that
Assumption 4.4.1 holds, P = ﬁg is constructed at wp € RP, and P satisfies H(wp) < (14 ()P
Then the following inequalities hold:

Erllgn(w) — gp(w) b1 < 2Lp (f(w) = f(w.)),
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Eullgs (w)[3s < ALp (F(w) — Fw.)) + 2‘;

where Lp and o are given by

Lp— n(by — 1) n — by

" bg(n —1)

p
u

max 2 M=by TN~ op o e
bg(n—l)fy T (H(wp))Vg (1+¢), o° = bg(n _gl)n;”vfl(w*)” :

Here, 4F is the relative upper quadratic regularity constant of f with respect to H(w) + pI, and
YT = maXe(y) ’yip,u, where ’yﬁu is the relative upper quadratic reqularity constant of f; with respect

to V2 f;(w) + pl.

The proof of this proposition may be found in Section 4.8.8. Proposition 4.4.10 generalizes
(4.9) from [72]. The bounds differ in that Proposition 4.4.10 depends upon Lp, the preconditioned
analogue of £, which we call the preconditioned expected smoothness constant.

In our convergence analysis, Lp plays the same role as the smoothness constant in gradient
descent. Proposition 4.4.10 reveals the role of the gradient batch size in determining the expected
smoothness constant. As the gradient batch size b, increases from 1 to n, Lp decreases from
TP (H(wp))y0™*(1 + ¢) to v2(1 + ¢). Recall preconditioning helps globally when ~£™2* = O(1).
In this case, Proposition 4.4.10 implies that the batch size by = O(7°(H (wp)) is needed to ensure
Lp = O(1). The dependence upon the p-dissimilarity is consistent with [56], which shows a similar
dependence when all the f;’s are strongly convex. Hence, the p-dissimilarity plays a key role in

determining the Hessian and gradient batch sizes.

4.4.5 Convergence of SketchySGD

In this section, we present convergence results for Algorithm 12 when f is convex and strongly convex.

We first state hypotheses governing the construction of the preconditioner at each update index j.

Assumption 4.4.11 (Preconditioner hyperparameters). Given update frequency u, total number of

stages s, number of inner iterations m, and ¢ € (0, 1), Algorithm 12 sets hyperparameters as follows:

1. The Hessian batchsize is set as

TP(H(’LU]-)) 10g (dé)ff(["([s(wj)) )

by, = O 2

2. The randomized Nystrom approximation is constructed with rank

o cue(1))
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Assumption 4.4.11, along with Proposition 4.4.9 and a union bound argument, ensures that the
preconditioners constructed by Algorithm 12 faithfully approximate the Hessian with high probability

throughout all iterations.

Corollary 4.4.12 (Union bound). Let Q) = ﬂ;::gl 5;1), and ) = ﬂjmzsl 5;2) where

e® — {(1- Qg < H(wy) = (1+ O, )

Then under Assumption 4.4.11,

u

1. For convex and smooth f, P (62?) >1- %5.

2. For strongly convexr and smooth f, P (5@) >1— 225,

Proof. We only prove item 2, as the proof of item 1 is analogous. To this end, observe Assump-

tion 4.4.11 and Proposition 4.4.9 imply

P(eF) <.

Thus,
ms/u c ms/u c ms
)\ _ (2), (2),
P(eR)=1-P| U 7% 21- X p(gPF) >1-0
j=1 j=1

Convergence for convex f

Our first convergence result shows SketchySGD can obtain sublinear convergence to a ball with only
one stage s when f is convex but not strongly convex. We shall see that when f is strongly convex,
the convergence rate improves from sublinear to linear, but that multiple stages (s > 1) are required

to realize this improvement.

Theorem 4.4.13 (SketchySGD convex convergence). Consider Problem Equation (4.1) under

Assumption 4.4.1. Run Algorithm 12 for s =1 stage with m inner iterations, using gradient batch

. . . . . Pllwo —Wx 2
size by, regularization p > 0, learning rate n = min {‘wlp, \/ l;'zmlpo}, update frequency u,

¢ € (0,1), and preconditioner hyperparameters specified in Assumption 4.4.11. Then conditioned on
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the event Eg in Corollary 4.4.12,

8Lp|lwo — wil|, 4 V2pollwo — willp,

E[f() — flw,)] < 0 N

The proof is given in Section 4.4.7.

Discussion Theorem 4.4.13 shows that when f is convex, Algorithm 12 equipped with ap-

propriate fixed learning rate converges in expectation to an e-ball around the minimum after

Lp|lwo—w,|3 po®|lwo—w, ||7 . . . . . . .
=0 o ~——0 | iterations. This convergence rate is consistent with previous

€ €

results on stochastic approximation using SGD for smooth convex objectives with bounded gradient
variance [99]. However, for SketchySGD, the iteration complexity depends on the preconditioned
expected smoothness constant and the preconditioned initial distance to the optimum, which may
be much smaller than their non-preconditioned counterparts. Thus, SketchySGD provides faster
convergence whenever preconditioning favorably transforms the problem. We give a concrete example

where SketchySGD yield an explicit advantage over SGD in Section 4.4.6 below.

Convergence for strongly convex f

When f is strongly convex, we can prove a stronger result that relies on the following lemma, a

preconditioned analogue of the strong convexity lower bound.

Lemma 4.4.14 (Preconditioned strong convexity bound). Let P = Hg + pl. Assume the conclusion
of Proposition 4.4.9 holds: Hg approzimates H well. Then

Flw) = fw.) = Flw = w3,

where 4 = (1 = ()t ve.

The proof of Lemma 4.4.14 is given in Section 4.8.7. We now state the convergence theorem for

SketchySGD when f is strongly convex, which makes use of several stages s.

Theorem 4.4.15 (SketchySGD strongly convex convergence). Instate Assumption 4.4.1 and As-
sumption 4.4.2. Run Algorithm 12 for

ms > ﬁ (cp + 25;) (1+ p/p)log (Q(f(w())e_ ﬂw*”) iterations,

with gradient batchsize by, learning rate n = min{1/4Lp,ep/(802)}, reqularization p < p < Liax,

update frequency u, and preconditioner hyperparameters specified in Assumption 4.4.11. Then
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conditioned on the event 5@ in Corollary 4.4.12, Algorithm 12 outputs a point W% satisfying

E (@) - f(w,)] <e

The proof is given in Section 4.4.7, along with the exact values of m and s. An immediate
corollary of Theorem 4.4.15 is that, supposing the optimal model interpolates the data so 02 = 0,

SketchySGD converges linearly to the optimum.

Corollary 4.4.16 (Convergence under interpolation). Suppose 02 = 0, and instate the hypotheses
of Theorem 4.4.15. Run Algorithm 12 for

(13_20 % (14 p/u)log (Q(f(wO) 6_ flw))

ms >

> iterations

with learning rate n = ﬁ. Then Algorithm 12 outputs a point W) satisfying

E /@) - fw.)]| < e

Discussion Theorem 4.4.15 shows that with an appropriate fixed learning rate, SketchySGD
~ 2

(Algorithm 12) outputs an e-suboptimal point in expectation after ms = O (%5 + %) iterations.

For smooth strongly convex f, minibatch SGD with a fixed learning rate can produce an e-suboptimal

point (in expectation) after O (% + 5723) iterations 2. However, this comparison is flawed as minibatch
SGD does not perform periodic averaging steps. By Theorem 4.4.15, minibatch SGD with periodic
averaging (a special case of Algorithm 12, when the preconditioner is always the identity) only requires
O (ﬁ + :—;) iterations to reach an e-suboptimal point in expectation. Comparing the two rates, we
see SketchySGD has lower iteration complexity when Lp /v, = O(1) and v, = (1). These relations
hold when the objective is quadratic, which we discuss in detail more below (Corollary 4.4.17).
Under interpolation, Corollary 4.4.16 shows SketchySGD with a fixed learning rate converges
linearly to e-suboptimality in at most O (%’ﬁ log (%)) iterations. When Lp /~, satisfies Lp /v, =
O(1), which corresponds to the setting where Hessian information can help, SketchySGD enjoys
a convergence rate of O (5 log (%)), faster than the O (Iilog (%)) rate of gradient descent. This
improves upon prior analyses of stochastic Newton methods under interpolation, which fail to
show the benefit of using Hessian information. p-Regularized subsampled-Newton, a special case of
SketchySGD, was only shown to converge in at most O (% log (%)) iterations in [113, Theorem 1,

p. 3], which is worse than the convergence rate of gradient descent by a factor of O(L/p).

2This result follows from [72], using strong convexity.
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4.4.6 When does SketchySGD improve over SGD?

We now present a concrete setting illustrating when SketchySGD converges faster than SGD. Specifi-
cally, when the objective is quadratic and strongly convex, SketchySGD enjoys an improved iteration
complexity relative to SGD. In general, improved global convergence cannot be expected beyond
quadratic functions without restricting the function class, as it is well-known in the worst case,
that second-order optimization algorithms such as Newton’s method do not improve over first-order
methods [8,122]. Thus without imposing further assumptions, improved global convergence for

quadratic functions is the best that can be hoped for. We now give our formal result.

Corollary 4.4.17 (SketchySGD converges fast for quadratic functions). Under the hypotheses of
Theorem 4.4.15, and the assumptions that f is quadratic, u = 0o, and by, = 7°(H), the following
holds:

1. If 0% > 0, after ms = O ([/% + ‘Z—ﬂ log(l/e)) iterations, Algorithm 12 outputs a point w®)
satisfying

E[f (@) — f(w.)] <.

2. If 0> =0, after ms = O (ﬁ log (%)) iterations, Algorithm 12 outputs a point w'®) satisfying,
E[f(2") = f(w.)] <e.

Recall minibatch SGD has iteration complexity of O ([% + g} 10g(1/e)) when ¢ > 0, and
(@) (5 log(l/e)) when 02 = 0. Thus, Corollary 4.4.17 shows SketchySGD (Algorithm 12) roughly

enjoys an O (L/p) improvement in iteration complexity relative to SGD, provided the gradient
batch size satisfies by = O(77(H)). We find the prediction that SketchySGD outperforms its
non-preconditioned counterpart on ill-conditioned problems, is realized by the practical version

(Algorithm 10) in our experiments.

Remark 4.4.18 (When does better iteration complexity imply fast computational complexity?). To
understand when SketchySGD has lower computational complexity than SGD, assume interpolation
(62 =0), and L < Lyax. Under these hypotheses, the optimal total computational complexity of
SGD is O(kp), which is achieved with b, = 1. By comparison, SketchySGD (with b, = 7°(H)) has
total computational complexity O (ﬁT”(H)p). Then if 7°(H) = O(1//p), and p = 0Lyax where

0 € (0,1), SketchySGD enjoys an improved computational complexity on the order of O ( Linax/ 9).

Hence when 77(H) is not too large, SketchySGD also enjoys better computational complexity.
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4.4.7 Proofs of Theorem 4.4.13 and Theorem 4.4.15

We now turn to the proofs of Theorem 4.4.13 and Theorem 4.4.15. To avoid notational clutter in the

proofs, we employ the following notation for the preconditioner at iteration k of stage s.
P = Hg, + pl,

Here j corresponds to the index of the current preconditioner, so that multiple values of k¥ may be
mapped to the same index j. For the convex case we omit the the superscript and simply write Py,

as s = 1. With this notational preliminaries out the way, we now commence with the proofs.

Proof of Theorem 4.4.13

Proof. Expanding, and taking the expectation conditioned on k, we reach
2 _ 2 -1 2 2
Epfwisr = willp, = wi —wellp, = 2008 g, wie = wa) pe + 07 Exllgpe[p-r (%)
Now, by convexity and Proposition 4.4.10, (x) becomes
Epllwns — w3, <l —w, s, +20@ncp — 1) (Flwr) — F(w.)) +20%/p.

Summing the above display from £ =0,---m — 1 yields

m—1 m—1 1 m—1
Eellwers = wel[d, < Y llwe = walid, +20m 2nLe = 1) — 7 [fw) = f(w.)]
k=0 k=0 k=0
2mn2o?
P

. . . . . . . ~ —1
Rearranging, and using convexity of f in conjunction with @ = % Z;;n:o wy, reaches

m—1
2mn o?
Epllwkr1 — wallf, +2nm (1 —20Lp) [f () Z lwr, — w3, +

k=0
Taking the total expectation over all iterations, we find

2mn?o?
2nm (1 = 20Lp) E[f (@) — f(w)] < [lwo — w.]|B, + ——.

Consequently, we have

1 9 no?
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. . pllwo—w.1%
Setting 7 = min {4£1p’ \ 5z ¢, we conclude

— 2 _
B17(0) — flu) < AR Vol vl

Strongly convex case Suppose we are in stage s of Algorithm 12. Following identical logic to the

convex case, we reach

m—1
Exllwi)y — will +20m (2nLp — 1) [£(@D) = f(w,)
k=0 k
m—1
s 2mn?o?
<3l —wil ) + .
k=0 ¥

Now, taking the total expectation over all inner iterations conditioned on outer iterations 0 through

s, yields
o (s+1) - (s) 5 2mn’o?
2gm(2nLe = 1) (Bo.[F@C )] = f(w.) < [0 w2 +
Invoking Lemma 4.4.14, and rearranging, the preceding display becomes
1 no?
Eo:s[f ()] = f(w,) < = D)) = f(wy)) + ————.
ol (@] = flwn) S s (F00) = () +

16(Lp+207/(ep))

Setting m = %

and using 7 = min{1/4Lp, g%}, the previous display and a routine

computation yield

Eo.s[f(@ )] = f(w,) < % (£@) = flwa) + 5.

Taking the total expectation over all outer iterations and recursing, obtains

Bl 0°)] - f(w) < (3) () = fw)+ 5,

Setting s = 2log (M), we conclude

€

E[f (@) — f(w.) <,

as desired. n
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4.5 Numerical experiments

In this section, we evaluate the performance of SketchySGD through six sets of experiments. These

experiments are presented as follows:

e Comparisons to first-order methods (Section 4.5.1): We compare SketchySGD to SGD, SVRG,
minibatch SAGA [63] (henceforth referred to as SAGA) and loopless Katyusha (L-Katyusha) on
ridge regression and lo-regularized logistic regression. SketchySGD outperforms the competitor

methods, even after they have been tuned.

e Comparisons to second-order methods (Section 4.5.2): We compare SketchySGD to L-BFGS
[104], stochastic LBFGS (SLBFGS) [116], randomized subspace Newton (RSN) [71], and
Newton Sketch [132] on ridge regression and l-regularized logistic regression. SketchySGD

either outperforms or performs comparably to these methods.

e Comparisons to preconditioned CG (PCG) (Section 4.5.3): We compare SketchySGD to
Jacobi PCG [83,161], sketch-and-precondition PCG (with Gaussian and sparse embeddings)
[10,34,109,114], and Nystrom PCG on ridge regression from Chapter 2. Again, SketchySGD

either outperforms or performs comparably to these methods.

o Large-scale logistic regression (Section 4.5.4): We compare SketchySGD to SGD and SAGA on
a random features transformation of the HIGGS dataset, where computing full gradients of the
objective is computationally prohibitive. SketchySGD vastly outperforms the competition in

this setting.

e Tabular deep learning with multi-layer perceptrons (Section 4.5.5): We compare SketchySGD to
popular first-order (SGD, Adam, Yogi [90,143,180]) and second-order methods in deep learning
(AdaHessian, Shampoo [75,153,175]). SketchySGD outperforms the second-order methods and

performs comparably to the first-order methods.

e In the supplement, we provide ablation studies for SketchySGD’s key hyperparmeters: update
frequency (Section 4.11.2), rank parameter (Section 4.11.2), and learning rate (Section 4.11.4).

We also demonstrate how SketchySGD improves problem conditioning in Section 4.11.5.

For convex problems, we run SketchySGD with two different preconditioners: (1) Nystrom, which
takes a randomized-low rank approximation to the subsampled Hessian and (2) Subsampled Newton
(SSN), which uses the subsampled Hessian without approximation. Recall, this is a special case of
the Nystrom preconditioner for which the rank 7; is equal to the Hessian batch size by, . SketchySGD
is ran according to the defaults presented in Section 4.2, except for in the deep learning experiments
(Section 4.5.5).

The datasets used in Sections 4.5.1 to 4.5.3 are presented in Table 4.2. Datasets with “-rf” after

their names have been transformed using random features [111,136]. The condition number reported
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in Table 4.2 is a lower bound on the condition number of the corresponding ridge regression/logistic

regression problem.?

Table 4.2: Datasets and summary statistics.

Dataset Ntr Ntest p nonzeros % Condition number Task
E2006-tfidf [91] 16087 3308 150360 0.8256 1.051 x 106 Ridge
YearPredictionMSD-rf [46] 463715 51630 4367 50.58 1.512 x 10% Ridge
yolanda-rf [76] 320000 80000 1000 100 1.224 x 10% Ridge
ijennl-rf [134] 49990 91701 2500 100 3.521 x 10° Logistic
real-sim [29] 57847 14462 20958 0.2465 1.785 x 10T Logistic
susy-rf [14] 4500000 | 500000 1000 100 4.626 x 108 Logistic

Each method is run for 40 full gradient evaluations (except Sections 4.5.4 and 4.5.5, where we use
10 and 105, respectively). Note for SVRG, L-Katyusha, and SLBFGS, this corresponds to 20 epochs,
as at the end of each epoch SVRG, they compute full a gradients to perform variance reduction. All
methods use a gradient batch size of b, = 256.

We plot the distribution of results for each dataset and optimizer combination over several
random seeds to reduce variability in the outcomes; the solid/dashed lines show the median and
shaded regions represent the 10-90th quantile. The figures we show are plotted with respect to both
wall-clock time and full gradient evaluations. We truncate plots with respect to wall-clock time at
the time when the second-fastest optimizer terminates. We place markers at every 10 full data passes
for curves corresponding to SketchySGD, allowing us to compare the time efficiency of using the
Nystrom and SSN preconditioners in our method.

Additional details appear in Section 4.10 and code to reproduce our experiments may be found

at the git repo https://github.com/udellgroup/SketchySGD.

4.5.1 SketchySGD outperforms first-order methods

In this section, we compare SketchySGD to the first-order methods SGD, SVRG, SAGA, and
L-Katyusha. In Section 4.5.1, we use the default values for the learning rate/smoothness hyperpa-
rameters, based on recommendations made in [37,86,94] and scikit-learn [131]* (see Section 4.10
for more details). In Section 4.5.1, we tune the learning rate/smoothness hyperparameter via grid

search. Across both settings, SketchySGD outperforms the competition.

First-order methods — defaults

Figures 4.2 and 4.3 compare SketchySGD to first-order methods run with their defaults. SketchySGD
(Nystrom) and SketchySGD (SSN) uniformly outperform their first-order counterparts, sometimes

3Details of how this lower bound is computed are given in Section 4.9.
4SGD does not have a default learning rate. Therefore, we exclude this method from this comparison.
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Figure 4.2: Comparisons to first-order methods with default learning rates (SVRG, SAGA) and
smoothness parameters (L-Katyusha) on ls-regularized logistic regression.

dramatically. In the case of the E2006-tfidf and ijennl-rf datasets, SVRG, SAGA, and L-Katyusha
make no progress at all. Even for datasets where SVRG, SAGA, and L-Katyusha do make progress,
their performance lags significantly behind SketchySGD (Nystrom) and SketchySGD (SSN). Second-
order information speeds up SketchySGD without significant computational costs: the plots show
both variants of SketchySGD converge faster than their first-order counterparts.

The plots also show that SketchySGD (Nystrom) and SketchySGD (SSN) exhibit similar perfor-
mance, despite SketchySGD (Nystrom) using much less information than SketchySGD (SSN). For
the YearPredictionMSD-rf and yolanda-rf datasets, SketchySGD (Nystrom) performs better than
SketchySGD (SSN). We expect this gap to become more pronounced as n grows, for SketchySGD
(SSN) requires O(y/np) flops to apply the preconditioner, while SketchySGD (Nystrom) needs only
O(rp) flops. This hypothesis is validated in Section 4.5.4, where we perform experiments on a

large-scale version of the HIGGS dataset.

First-order methods — tuned

Figures 4.4 and 4.5 show that SketchySGD (Nystrom) and SketchySGD (SSN) generally match or
outperform tuned first-order methods. For the tuned first-order methods, we only show the curve

corresponding to the lowest attained training loss.
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Figure 4.3: Comparisons to first-order methods with default learning rates (SVRG, SAGA) and
smoothness parameters (L-Katyusha) on ridge regression.

SketchySGD (Nystrom) and SketchySGD (SSN) outperform the competitor methods on E2006-
tfidf and YearPredictionMSD-rf, while performing comparably on both yolanda-rf and susy-rf. On
real-sim, we find SGD and SAGA perform better than SketchySGD (Nystrom) and SketchySGD

(SSN) on wall-clock time, but perform similarly on gradient evaluations.

4.5.2 SketchySGD (usually) outperforms second-order methods

We compare SketchySGD to the second-order methods L-BFGS (using the implementation in SciPy),
SLBFGS, RSN, and Newton Sketch. For SLBFGS, we tune the learning rate; we do not tune learning
rates for L-BFGS, RSN, or Newton Sketch since these methods use line search. The results for logistic
and ridge regression are presented in Figures 4.6 and 4.7, respectively. In several plots, SLBFGS
cuts off early because it tends to diverge at the best learning rate obtained by tuning. L-BFGS also
terminates early on ijennl-rf and real-sim because it reaches a high-accuracy solution in under 40
iterations. We are generous to methods that use line search — we do not account for the number of
function evaluations performed by L-BFGS, RSN, and Newton Sketch, nor do we account for the
number of additional full gradient evaluations performed by L-BFGS to satisfy the strong Wolfe
conditions.

Out of all the methods, SketchySGD provides the most consistent performance. When considering
wall-clock time performance, SketchySGD is only outperformed by SLBFGS (although it eventually
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Figure 4.4: Comparisons to first-order methods with tuned learning rates (SGD, SVRG, SAGA) and
smoothness parameters (L-Katyusha) on ls-regularized logistic regression.

diverges) and Newton Sketch on ijennl-rf, L-BFGS on real-sim, and RSN on yolanda-rf. On larger,
dense datasets, such as YearPredictionMSD-rf and susy-rf, SketchySGD is the clear winner. We
expect the performance gap between SketchySGD and the second-order methods to grow as the

datasets become larger, and we show this is the case in Section 4.12.1.

4.5.3 SketchySGD (usually) outperforms PCG

We compare SketchySGD to PCG with Jacobi, Nystrom, and sketch-and-precondition (Gaussian and
sparse embeddings) preconditioners. The results for ridge regression are presented in Figure 4.8. For
PCG, full gradient evaluations refer to the total number of iterations.

Similar to the results in Section 4.5.2, SketchySGD provides the most consistent performance.
On wall-clock time, SketchySGD is eventually outperformed by JacobiPCG on E2006-tfidf and
NystromPCG on yolanda-rf. However, SketchySGD (Nystrom) already reaches a reasonably low
training loss within 10 seconds and 2 seconds on YearPredictionMSD-rf and yolanda-rf, respectively,
while the PCG methods take much longer to reach this level of accuracy. Furthermore, SketchySGD
outperforms the sketch-and-precondition methods on all datasets. We expect the performance gap
between SketchySGD and PCG to grow as the datasets become larger, and we show this is the case
in Section 4.12.2.
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Figure 4.9: Comparison between SketchySGD and SAGA with default learning rate.

4.5.4 SketchySGD outperforms competitor methods on large-scale data

We apply random Fourier features to the HIGGS dataset, for which (ng.,p) = (1.05 - 107, 28), to
obtain a transformed dataset with size (n,, p) = (1.05-107,10%). This transformed dataset is 840 GB,
larger than the hard drive and RAM capacity of most computers. To optimize, we load the original
HIGGS dataset in memory and at each iteration, form a minibatch of the transformed dataset by
applying the random features transformation to a minibatch of HIGGS. In this setting, computing a
full gradient of the objective is computationally prohibitive. We exclude SVRG, L-Katyusha, and
SLBFGS since they require full gradients.

We compare SketchySGD to SGD and SAGA with both default learning rates (SAGA only) and
tuned learning rates (SGD and SAGA) via grid search.

Figures 4.9 and 4.10 show these two sets of comparisons®. We only plot test loss, as computing
the training loss is as expensive as computing a full gradient. The wall-clock time plots only show the
time taken in optimization; they do not include the time taken in repeatedly applying the random
features transformation. We find SGD and SAGA make little to no progress in decreasing the test
loss, even after tuning. However, both SketchySGD (Nystrom) and SketchySGD (SSN) are able to
decrease the test loss significantly. Furthermore, SketchySGD (Nystrom) is able to achieve a similar
test loss to SketchySGD (SSN) while taking less time, confirming that SketchySGD (Nystrém) can
be more efficient than SketchySGD (SSN) in solving large problems.

4.5.5 Tabular deep learning with multilayer perceptrons

Our experiments closely follow the setting in [87]. We compare SketchySGD (Nystrém) to SGD,
Adam, AdaHessian, Yogi, and Shampoo, which are popular optimizers for deep learning. For
experiments in this setting, we modify SketchySGD (Nystrém) to use momentum and gradient

debiasing, as in Adam (Section 4.7.1); we also set p = 10~ since it provides better performance. We

5The wall-clock time in Figure 4.10 cuts off earlier than in Figure 4.9 due to the addition of SGD, which completes
10 epochs faster than the other methods.
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Figure 4.10: Comparison between SketchySGD, SGD and SAGA with tuned learning rates.

use a 9-layer MLP with 512 units in each layer, and cosine annealing for learning rate scheduling. We
run the methods on the Fashion-MNIST, Devnagari-Script, and volkert datasets from OpenML [167].
Throughout, we use the weighted cross-entropy loss and balanced accuracy as evaluation metrics.
We only tune the initial learning rate for the methods and do so via random search. We form a
60/20/20 training/validation/test split of the data, and select the learning rate with the highest
balanced validation accuracy to generate the results reported in this section.

Test accuracy curves for each optimizer are presented in Figure 4.11, and final test accuracies
with quantiles are given in Table 4.3. We see SketchySGD consistently outperforms Shampoo, which
is an optimizer designed to approximate full-matrix AdaGrad [47]. Furthermore, SketchySGD tends
to be more stable than SGD after tuning. However, it is unclear whether SketchySGD performs
better than SGD, Adam, or Yogi, which are all first-order optimizers. The reasons for this lack of

improvement are unclear, providing an interesting direction for future work.

Table 4.3: 10th and 90th quantiles for final test accuracies.

Dataset\

Optimizer SGD Adam Yogi AdaHessian Shampoo SketchySGD
Fashion- 82.19, 90.26, §8.59,
o (90.47) (90.10, 90.51) (90.58) (82.25, 90.53) 259.10) (90.19, 90.50)
Dcs"cnr?g?“' (2.17,96.23)  (95.57, 95.98) (9955;317)’ (95.90, 96.17) E)%Q;S’ (96.11, 96.30)
(64,03, , (64.08, . (57.50, .
volkert L5t (64.61, 65.36) bLad) (63.66, 64.52) t22) (63.90, 65.01)

4.6 Conclusion

In this chapter, we have presented SketchySGD, a fast stochastic second-order method for convex
machine learning problems. SketchySGD uses subsampling and randomized low-rank approximation

to improve conditioning by approximating the curvature of the loss. Furthermore, SketchySGD uses



CHAPTER 4. SKETCHYSGD 108

fashion-mnist devnagari-script volkert
95 100 70
65
60
55
< 80 . . . 80 . . . ! 50
Z 0 100 200 300 0 100 200 300 400 0
g Wall-clock Time (s) Wall-clock Time (s)
g
S fashion-mnist devnagari-script volkert
<9 100 sy 70
3
=
95 1 65
90 A
90 60
851 |
85 55
80 80 T T T T 50— T T T
0 25 50 75 100 0 25 50 5 100
Epochs Epochs
— SGD Yogi —— Shampoo
—— Adam —— AdaHessian -4 - SketchySGD (Nystrom)

Figure 4.11: Test accuracies for SketchySGD and competitor methods on tabular deep learning tasks.

a novel automated learning rate and comes with default hyperparameters that enable it to work out
of the box without tuning.

SketchySGD has strong benefits both in theory and in practice. For quadratic objectives, our
theory shows SketchySGD converges to e-suboptimality at a faster rate than SGD, and our experiments
validate this improvement in practice. SketchySGD with its default hyperparameters outperforms or
matches the performance of SGD, SAGA, SVRG, SLBFGS, and L-Katyusha (the last four of which
use variance reduction), even when optimizing the learning rate for the competing methods using

grid search.

4.7 Additional algorithms

In this section we provide the pseudocode for the RandNysApprox algorithm mentioned in Section 4.2,
which SketchySGD uses to construct the low-rank approximation H S

Algorithm 13 follows Algorithm 3 from [164]. eps(x) is defined as the positive distance between
2 and the next largest floating point number of the same precision as x. The test matrix @ is the
same test matrix used to generate the sketch Y of Hg,. The resulting Nystrom approximation H Sk
is given by VAV7T. The resulting Nystrém approximation is psd but may have eigenvalues that are
equal to 0. In our algorithms, this approximation is always used in conjunction with a regularizer to

ensure positive definiteness.
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Algorithm 13 RandNysApprox

Input: sketch Y € RP*"i of Hg,, orthogonalized test matrix @ € RP*"7,

v = y/peps(norm(Y, 2)) {Compute shift}
Y, =Y +vQ {Add shift for stability}
C = chol(Q1Y,) {Cholesky decomposition: CTC = QTY,}
B=YC™! {Triangular solve}
[V,%,~] = svd(B,0) {Thin SVD}
A= max {0, ¥* — vI} {Compute eigs, and remove shift with element-wise max}

Output: V, A

4.7.1 Modifications for deep learning

We make modifications to the randomized Nystrom approximation and SketchySGD for deep learning.
Algorithm 14 adapts Algorithm 13 to the non-convex (e.g., deep learning) setting, and ensures that
the Randomized Nystrom approximation remains positive definite. The main difference between
Algorithm 14 and Algorithm 13 is that Algorithm 14 comes with a fail-safe step (colored red in the
algorithm block) in case the subsampled Hessian is indefinite and the resulting Cholesky decomposition
fails. When this failure occurs, the fail-safe step shifts the spectrum of C' by its smallest eigenvalue
to ensure it is positive definite. When there is no failure, it is easy to see that Algorithm 14 gives the

exact same output as Algorithm 13.

Algorithm 14 RandNysApproxMod

Input: sketch Y € RP*"i of Hg,, orthogonalized test matrix ) € RP*"J

v = /p eps(norm(Y, 2)) {Compute shift}
Y, =Y +vQ {Add shift for stability}
A=0 {Additional shift may be required for positive definiteness}
C = chol(QTY,) {Cholesky decomposition: CTC = QTYV,}
if chol fails then

Compute [W,T] = eig(QTY,) {Q"Y, is small and square}

Set A = )\min(QTK/)
R=W(T +|\NI)~YV2wT

B=YR {R is psd}
else

B=YC™! {Triangular solve}
end if
[V,%,~] = svd(B,0) {Thin SVD}
A= max{0, % — (v + |A[)T} {Compute eigs, and remove shift with element-wise max}

Output: V, A

Algorithm 15 adds momentum (which is a hyperparameter ) and gradient debiasing (similar to
Adam) to the practical version of SketchySGD Algorithm 10. These changes to the algorithm are
shown in red. In addition, Algorithm 15 does not use the automated learning rate; the learning rate

is now an input to the algorithm.
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Algorithm 15 SketchySGD (Deep learning version)

Input: initialization wy, learning rate n, momentum parameter 3, hvp oracle Op, ranks {r;},
regularization p, preconditioner update frequency u, stochastic gradient batch size by, stochastic
Hessian batch sizes {bp,; }
Initialize z_1 =0 {Initialize momentum vector}
for k=0,1,....m—1do

Sample a batch By

Compute stochastic gradient gp, (wy)

if k=0 (mod u) then

Set j=75+1
Sample a batch §; {IS;] = bn, }
® = randn(p, ;) {Gaussian test matrix}
@ = qr_econ (P)
Compute sketch Y = Hg, (w)Q {r calls to OHsj}
[V, A] = RandNysApproxMod (Y, Q, ;)
end if
zk = Bzi—1 + (1 = Bgs, (wg) {Update biased first moment estimate}
2 = 21/(1 — BFHY) {Compute bias-corrected first moment estimate.}
Compute vy, = (ﬁsj + pI) 712, via (4.5)
W41 = W — NV {Update parameters}
end for

4.8 Proofs not appearing in the main chapter

In this section, we give the proofs of claims that are not present in the main chapter.

4.8.1 Proof that SketchySGD is SGD in preconditioned space

Here we give the proof of (4.2) from Section 4.1. As in the prequel, we set P; = ffgj in order to
avoid notational clutter. Recall the SketchySGD update is given by

—1
W1 = wi — NP gBy,

where Ep, [9p,] = gr. We start by making the following observation about the SketchySGD update.

Lemma 4.8.1 (SketchySGD is SGD in preconditioned space). At outer iteration j define fp;(z) =

f(Pj_l/2z), that is define the change of variable w = Pj_l/2z, Then,

gr,(2) = P, 2g(P7122) = P g(w)

Hp, (z) = Pj_l/QH(Pj—l/Qz)Pj—l/Q _ P]31/2H(w)ij1/2.
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Hence the SketchySGD update may be realized as

Zht1 = 2k — NP, (2k)

—1/2
Wg+1 = P]- Zk+15

where gp, (2x) = Pj_l/QgBk (Pj_l/sz) is the stochastic gradient in preconditioned space.

Proof. The first display of equations follow from the definition of the change of variable and the
chain rule, while the last display follows from definition of the SketchySGD update and the first
display. O

4.8.2 Proof of Lemma 4.4.4

Proof. Let w,w’,w"” € C and set v = w’ —w. Then by Taylor’s theorem and smoothness and convexity
of h, it holds that

h(w') = h(w) + (V f(w),v) + ( / (1- t)””vzh“”“’)dt> 1013 0y

||v||?4(w,,)

T
= h(w) + (Vh(w),v) + S0l

1 vl|2
where Z = / (1- t)4|| ngh(wiv) .
0 ||UHA(w~)

Now, if h is just convex and A(w") = V2h(w")+ pl, a routine calculation shows that Z < L/p, which
by definition implies 7, (C) < L/p. This gives the first statement. For the second statement, note
that when h is p-strongly convex and A(w”) = V2h(w"), we have u/L < Z < L/u, which implies
the second claim with p/L < 4(C) < 7,(C) < L/p. O

4.8.3 Proof of Lemma 4.4.6
Below we provide the proof of Lemma 4.4.6.

Proof. By convexity of the f;’s and the finite sum structure of f, it is easy to see that
V2 fi(w) + pI =< n (H(w) + pI) Vi € [n].
Conjugating both sides by (H?)~1/2, we reach

(H(w) + pI)~ "2 (V2 fi(w) + pI) (H(w) + pI) " < .
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It now immediately follows that 7°(H(w)) < n. On the other hand, for all 7 € {1,...n} we have

V2 fi(w) + pI = [M (V2 fi(w)) + p] I = (M (w) + p) I,

1/2

where the last relation follows by definition of M (w). So, conjugating by (H”(w))™ '* we reach

,1_< M(w)-i—pI

(H7 ()™ (Vi) + pI) (7 ()™ = (M(w) + p) (H(w) +p1) ™ < = 2

)

t2  Combining both bounds, we conclude

which immediately yields 77(H (w)) < =27

M(w)
m

7 (H(w)) < min {n, W} )

4.8.4 Proof of Proposition 4.4.7

The proof of Proposition 4.4.7 is the culmination of several lemmas. We begin with a truncated
intrinsic dimension Matrix Bernstein Inequality discussed, only requires bounds on the first and
second moments that hold with some specified probability. It refines [81], who established a similar

result for the vanilla Matrix Bernstein Inequality.

Lemma 4.8.2 (Truncated Matrix Bernstein with intrinsic dimension). Let {X;}ic[n) be a sequence

of independent mean zero random matrices of the same size. Let 3 > 0 and {V1 i }icin)» {Va,itiem) be se-

quences of matrices with V1 ;, Va; = 0 for alli. Consider the event &; = {||Xl|| <B, X XE =<V, XEPX; = ng}
Define Y; = X;1¢g,, Y = >"1" | Y;. Suppose that the following conditions hold

P(&)>1—-3d forallic€n],

B < g.

Set Vi =>" Vi, Va=>1" Vo, and define

i 0
0V

, §2 = maX{||Vl||, H‘/QH}

Then for all t > q+ ¢+ g, X =31 X; satisfies

trace(V) o —(t—a)°/2_
PAIXI =) = no+ 4=, ep<<2+ﬁ(t—q)/3>'

Proof. The argument consists of relating P (|| X|| > ¢) to P(||Y|| > t), the latter of which is easily
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bounded. Indeed, from the definition of the &;’s, it is easily seen that
Vil <8, E[(Y —EY])(Y —E[Y])'] =W, E[(Y —E[Y]))" (Y —E[Y])] X Va.

Consequently, the intrinsic dimension Matrix Bernstein inequality [163, Theorem 7.3.1] implies for
any s > ¢+ /3, that

trace(V) —s2/2
POY - BVl 2 5) < 475 exp (@ = /3) | (1.12)

We now relate the tail probability of | X|| to the tail probability of ||Y||. To this end, the law of
total probability implies

P(|X]>t) =P(|Y]| > tX =Y)P(X =)
+P(|X] > X £Y)P(X #Y)
<P(IY| 2| X =Y)+P (U SE)

SPIX] = X =Y) +nd,

where the third inequality follows from {X # Y} < [JI, €L, and the last inequality uses P (U?:l 5?) <
S (1=P(&)) < nd. To bound P (||X| >t/ X =Y), observe that

1XI < IX —E[V]I| + |E[Y]|| <[ X - E[Y]] + 4,
which implies

B(|X]| > X = V) <B(|X —E[Y]]| +¢> X = Y)
—P(Y ~E[Y]| 2t qX =¥).

Inserting this last display into our bound for P (|| X|| > ¢) , we find

P(|X] > 1) <né+B(]Y —E[Y]| >t —qlX = V).

To conclude, we apply (4.12) with s =t — ¢ to obtain

trace(V) o —(t—q)*/2
PAIXI =) = no+ 4=, p<<2+ﬁ(t—q)/3>’

forallt > q+¢+ /3. O
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Lemma 4.8.3 (Bounded statistical leverage). Let D, = H(w)'/?2HE (w) ' Hoo(w)'/2, and set
d’s(HE (w)) = max{d’z(HZ (w)),1}. Then for some absolute constant C' > 0,

{‘ | s > Cen(Hocli) o8 (;)} <5

Proof. Recall that /0" (zTw)x = 30/2 )z, so that [[\/¢"(zTw)z HH” (w)-1 HzH2 . As z is

v-sub-Gaussian and trace(D%,) = d?(H(w)), Theorem 2.1 of [82] with ¥ = D% 1mphes that

Vi .%‘T

P{ el > 0* (dha(Hoc () + 2 )+ 2) } < xp(-0),

Setting t = d’(HL (w))log(1/8), we obtain the desired claim with C' = 5v2. O

Lemma 4.8.4 (Empirical Hessian concentration). Suppose n = () [d0¢(Hoo(w)) log(n/6)], then
| Fe )2 1B () = Hoc () HE () 72| < 12,

with probability at least 1 — §/n.

Proof. We begin by writing

2, ()™ [H () — Heol)] HE ()2 = 237 (2,27~ D2).
i=1

where Z; = HY (w)~Y/2\/0"(zTw)z; and D8, = HE (w) /2 Hoo (w)HE, (w) /2. Set X; = 2 (Z; 2] —

and observe that E[X;] = 0. We seek to apply Lemma 4.8.2, to this end observe that Lemma 4.8.3
implies

E”a: w)x

- 2n o
P Pe(Hoo 1 < —.
1116131‘1)]{ ( ch(w) 1 ” Cdeﬁ( ( )) Og( 1 )) — 2n?

Consequently, we obtain the following bounds on || X;| and E[X?]:

1l = %max{Amax (2:2F = D), =Amin (Z:2] — D2,)}

1 1
< *maX{IIZiIIQ,Amax(D&)} < *maX{HZiWJ}

- .
= lmau)( ‘ 0'(zTw)z < Cdgg(Hoo(w)) log (7),
" Hgo(w) 1 n
and
Cd°(Ho log (20
E[X?] = L B[|Z,|?2.2]) < et (oo (W 2)) 8 (%) po

n

Dz,),
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Hence setting § = Cdlg(Hoo(w))log (32) and V; = BD5°, it follows immediately from the preceding

considerations that
1
maxP (110 < B/, BIXE] = 5% ) > 1- 0/(2n?),
i€[n n

As Vi = Vo =V = BD¥_/n, it follows that ||V|| < 8/n. Moreover,

trace(V)/[|[V|| = trace(V)/|[V]| = trace(DZ, ) /|| DE ||
= dg(Hoo(w)) [1 4 p/M(Hoo(w))] < 2dgg(Hoo (w)),

where the last inequality follows as p < A\j(Hoo(w)). Thus, we can invoke Lemma 4.8.2 with

. J log (B 1o (Hathi)

+ ;
n n

to reach with probability at least 1 — ¢/(2n) that
| F12 () 772 [ (w) — Ho ()] HE ()72

<

+
n n

Recalling 8 = O (d24(Hoo(w))log (%)) and n = Q (Jgﬁ(Hoo(w)) log (M) log (%)), we con-
clude from the last display that

P (| F ()72 [H () — Hoolw)) B2 (w) 772 < 1/2) 2 1= 5/(2).

Proof of Proposition 4.4.7

Proof. Let Z; = HY, (w)~/2\/0"(xTw)z; and observe the hypotheses on n, combined with Lemma 4.8.3
and Lemma 4.8.4 imply that

_ n 1
P (x| < Oyt () o () 3HA(w) = HP(w) =

>1-46/n.
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Combining the previous relation with matrix similarity, we find

N (H7(w) ™22 £ ) HP ()72 ) = (V27 (w) V2P ()92 ()2
< 2 (V2f(w) 2 HE (w) T VR (w)?) = 200 (HE (w) 2V £ (w) HE, () 7 /?)

<2+ 20 (HE (w) "2V fi(w) HL (w)71/2) = 2+ 20(Z:2T) = 2+ 2| 24|
n

< Cdly(Hoo (w)) log (5 )

Recalling that 77 (H (w)) = max;e, A (HP(w)~1/2V2 £ (w)HP (w)~1/2), the last display and a union
bound yield

P (7 (H(w)) < Cdly(Hoo(w))log (5) ) = 134,

as desired. 0O

4.8.5 Proof of Lemma 4.4.8

Proof. The result is a consequence of a standard application of the intrinsic dimension Matrix Bern-
stein inequality. Indeed, let D? = (H(w) + pI)~*/2H (w)(H (w) + pI)~"/? and X, = - (Z;2] - D*),
where Z; = (H(w) + pI)~Y/2V2 f;(w)/2. Observe that E[X;] = 0, and set X =", X;. To see that
the conditions of the intrinsic dimension Matrix Bernstein inequality are met, note that X; and
E[X?] satisfy

1 " (H (w
1 X:]] = —11Z: || < T(H(w) >)7
by, by,
1 7P (H(w))
2 2, T ._
E[X?] = % % E[||zi]|2:2; | = B Df =Y.

Moreover as p < A\ (H(w)),
tr(V)/|IV|| < 2dg(H (w)).

Thus, the intrinsic dimension Matrix Bernstein inequality [163, Theorem 7.3.1] implies

P{IX]| > t} < 8dZg(H (w)) exp (_Tp(H(Zt)t) (/12+ t/3)> ’

b

for all t > /7P (H(w))/bp, + 7°(H(w))/(3by). So, setting
8d;, (H(w)))

Aoy (M) sy
- N +3bh7<<w>>og( !



CHAPTER 4. SKETCHYSGD 117

P w
Tp(H(w))log(idCff(?( )))

and b, = O o , it holds that
P (||X|| < C) >1-4.
=14¢)°
This last display immediately implies that
(1 - C) HP(w) < H(w) = (1 + C) Ho (w),
1+¢ - - 1+¢

which is equivalent to

¢ -1 ¢ -1
P _ P
(1+1+<) HS<HP<<1 1+<) HE.

The desired claim now follows from the last display, upon observing that

-1 1
1—g§<1+1i§> S(l_lic) —14¢

4.8.6 Proof of Proposition 4.4.9 and Corollary 4.4.12
Proof of Proposition 4.4.9

Proof. Let E = Hg — Hg, and note that E = 0 by Lemma 2.2.1. Now by our hypothesis on r, it
follows from Lemma 3.7.4, that
P(IE] < Co/4) > 1-6/2

Using the decomposition HE = P + E, we apply Weyl’s inequalities to find
M(PY2HEPY?) < )\ (P—l/QHgP—l/Z) N (P—WEP—U?) -

FE
L 2ep 2 <1 p el <1+ LB <1 g
p

Moreover as E = 0 we have HS = P, so conjugation yields P~Y/2HZP~Y/2 = I,. The preceding
inequality immediately yields )\p(P’l/zHgP’l/z) > 1. Hence

1< M\ (P7Y2HEPY2) < \(PTY2HEPTY?) <1 4-¢/4.
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As an immediate consequence of this last display, we obtain the Loewner ordering relation
P<H = (1+¢/4)P.
Now, Lemma 4.4.8 and a union bound implies that
P(P<H{=(1+¢/4)P, (1—-C¢/4)HE < H” < (1+¢/4)HE) >1—0.
Combining these relations and using that (14 ¢/4)? <1+ ¢ for ¢ € (0,1), we find
(1-QP=H 2 (1+()P.

To conclude, note that (1 + p/u)H? < H < HP, which combined with the last display implies

1

P=<H=(1+()P.

4.8.7 Proof of Lemma 4.4.14

Proof. The function f is smooth and strongly convex, so it is quadratically regular. Consequently,

Fw) = flw.) + S lw = w ).

Hence we have

where in the last inequality we have used the hypothesis that the conclusion of Proposition 4.4.9

holds. The claim now follows by recalling that 4, = %w. O

4.8.8 Proof of Proposition 4.4.10

In this subsection we prove Proposition 4.4.10, which controls the variance of the preconditioned mini-
batch gradient. We start by proving the following more general result, from which Proposition 4.4.10

follows immediately.

Proposition 4.8.5 (Expected smoothness in the dual-norm). Suppose that each f; is convex and
satisfies I
filw +h) < fi(w) + (gi(w), h) + F[|ll3y,,  Vw,h € R,
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for some symmetric positive definite matrixz M;. Moreover, let f satisfy
L, . »
flw+h) < f(w) +{g(w), k) + S |IAllay,  Vw,h € R,

where M = %Z?:l M;. Define 7(M) = maxj<i<n A1 (M_I/QMZ»M_I/Q). Further, suppose we

construct the gradient sample gp(w) with batch-size by. Then for every w € RP
Egllgn(w) — g5 (w)|3-1 < 2Lu(f(w) — f(w') = (g(w'),w — '),

Egllgs(w)|i-1 < 4Lu(f(w) = f(w,)) + 203,

where
n(bg — 1) n—>o

SR TR

maxi<i<nLi,

and

2 _ n—by l - ) 2
oM = by(n—1)n ; IV filw) I

Proof. Introduce the change of variable w = M ™12z, so that f;(w) = f;(M~Y22) = f; p(z) and
f(w) = f(M~22) = fur(2). Then by our hypotheses on the f;’s, f, and the definition of 7(M), we
have that for all z,h € R?

T(M)L;

h2
D5,

Jiae(z+h) < fim(2) +(gim(2), h) +
Farle 1) < Far(2) + gaa (2), ) + 5 A1
Consequently, Proposition 3.8 of [72] implies
Ellgna(2) = gpm(Z)° < 2Lar (far(2) = far(2) = (gm(2'), 2 = 27))

n—>5t, 1«—
E D= ——L—— HER ]
o) = 52455 3 s

where £ = 2=V 4 7 (M)-2=% max; i<, L;. Invoking Lemma 4.8.1, the above displays become
bg(n—1) bg(n—1) - =

Ellgs(w) — g5 (w3 < 2La (f(w) = f(w') = {g(w'),w — '),

n—>b, 1«
E 2 g 1 ) 2 2
lon o)l = 5 S lsCw) i =0

The last portion of the desired claim now follows by combining the preceding displays with w’ = wy,
and the identity Ellal|3,_, < 2E|la — b||%,_, + 2E|[b[]3,_.. O
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Proof of Proposition 4.4.10

Proof. Set M; = P so that M = HP(wp). Now, by the assumption that H(wp) < (1 + {)P and item
1 of Lemma 4.4.4 it holds that each f; is smooth with respect to M; with L; = (1+ {)7"H(wp)vy,,,
while f is smooth with respect to M with L = (1 + ¢{)7%. Noting that 7(M) = 1, the claim follows
from Proposition 4.8.5. O

4.9 Lower bound on condition number in Table 4.2

Recall the condition number x is given by

_ SUDPyeRre A1 (H(IU))

inf,ere A\p(H(w))

Consequently when f is a the least-squares or logistic loss with data matrix A, and /2-regularization
1 > 0, it holds for any r < p that

M) M(H(0) a3 (A)/n+ g
= N(H©) = A HO) ~ o2 (At i

\Y
\

Hence « is lower bounded by (02(A)/n + pn)/(02(A)/n + u). Table 4.2 gives the numerical value for
this lower bound for r = 100.

4.10 Experimental details

Here we provide more details regarding the experiments in Section 4.5.

Regularization For convex problems (Sections 4.5.1 to 4.5.4 and 4.11.4), we set the ly-regularization
to 1072 /ny,, where ny, is the size of the training set. For deep learning (Section 4.5.5), we use no

regularization or weight decay, as the experiments are proof-of-concept.

Ridge regression datasets The ridge regression experiments are run on the datasets described
in the main text. E2006-tfidf and YearPredictionMSD’s rows are normalized to have unit-norm,
while we standardize the features of yolanda. For YearPredictionMSD we use a ReLLU random
features transformation that gives us 4367 features in total. For yolanda we use a random features
transformation with bandwidth 1 that gives us 1000 features in total, and perform a random 80-20
split to form a training and test set. In Table 4.4, we provide the dimensions of the datasets, where
Nty i the number of training samples, nest 1S the number of testing samples, and p is the number of

features.



CHAPTER 4. SKETCHYSGD 121

Table 4.4: Dimensions of ridge regression datasets.

Dataset Ntr Ntest p
E2006-tfidf 16087 3308 150360
YearPredictionMSD | 463715 | 51630 4367
yolanda 320000 | 80000 1000

Logistic regression datasets The logistic regression experiments are run on the datasets described
in the main text. All datasets’ rows are normalized so that they have unit norm. For ijennl and susy
we use a random features transformation with bandwidth 1 that gives us 2500 and 1000 features,
respectively. For real-sim, we use a random 80-20 split to form a training and test set. For HIGGS,
we repeatedly apply a random features transformation with bandwidth 1 to obtain 10000 features, as
described in Section 4.5.4. In Table 4.5, we provide the dimensions of the datasets, where ny, is the

number of training samples, niest is the number of testing samples, and p is the number of features.

Table 4.5: Dimensions of logistic regression datasets.

Dataset Ttr Ntest P
ijennl 49990 91701 2500
susy 4500000 500000 1000

real-sim 57847 14462 20958
HIGGS 10500000 | 500000 | 10000

Deep learning datasets The deep experiments are run on the datasets described in the main text.
We download the datasets using the OpenML-Python connector [54]. Each dataset is standardized
to have zero mean and unit variance, and the statistics for standardization are calculated using only
the training split. In Table 4.6, we provide the dimensions of the datasets, where n is the number of
samples (before splitting into training, validation, and test sets), p is the number of features, and ID

is the unique identifier of the dataset on OpenML.

Dataset augmentation for scaling (Sections 4.5.2 and 4.5.3) We perform data augmentation
before any additional preprocessing steps (e.g., normalization, standardization, random features).
To increase the samples by a factor of k, we duplicate the dataset a total of £ — 1 times. For each
duplicate, we generate a random Gaussian matrix, where each element has variance 0.02. For sparse
datasets, this Gaussian matrix is generated to have the same number of nonzeros as the original
dataset. Each duplicate and Gaussian matrix is summed; the resulting sums are stacked to form the

augmented dataset.
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Table 4.6: Dimensions of deep learning datasets.

Dataset n p 1D
Fashion-MNIST | 70000 784 | 40996
Devnagari-Script | 92000 | 1024 | 40923
volkert 58310 180 41166

Random seeds In Sections 4.5.1, 4.11.1 and 4.11.4 we run all experiments with 10 random seeds,
with the exception of susy, for which we use 3 random seeds.

We use the same number of random seeds in Section 4.5.2, except for the scaling experiments.
For the scaling experiments, we only use 3 random seeds.

In Section 4.5.4 we use only 1 random seed due to the sheer size of the problem.

In Section 4.5.5 we use only 1 random seed for each learning rate given by random search. However,

we use 10 random seeds to generate the results with the tuned learning rate.

Additional hyperparameters (Sections 4.5.1 and 4.5.4) For SVRG we perform a full gradient
computation at every epoch.

For L-Katyusha, we initialize the update probability pupa = bg/n4r to ensure the average number
of iterations between full gradient computations is equal to one epoch. We follow [94] and set y equal
to the ly-regularization parameter, o = #,60; = min{ \/W, %}, and 0y = %

All algorithms use a batch size of 256 for computing stochastic gradients, except on the HIGGS
dataset. For the HIGGS dataset, SGD, SAGA, and SketchySGD are all run with a batch size of 4096.

Additional hyperparameters (Section 4.5.2) For SLBFGS we perform a full gradient com-
putation at every epoch. Furthermore, we update the inverse Hessian approximation every epoch
and set the Hessian batch size to \/n,, which matches the Hessian batch size hyperparameter in
SketchySGD. In addition, we follow [116] and set the memory size of SLFBGS to 10. We use a batch
size of 256 for computing stochastic gradients.

We use the defaults for L-BFGS provided in the SciPy implementation, only tuning the “factr”
parameter when necessary to avoid early termination.

For RSN, we grid search the sketch size in {250, 500, 750, 1000}.

For Newton Sketch, we grid search the sketch size in {21072 - min(ny,, p) - 5089k =0,1,... ,9}.

For RSN and Newton Sketch, we follow the original publications’ suggestions [71,132] for setting

the line search parameters.

Additional hyperparameters (Section 4.5.3) We grid search the sketch size in {21073 -
min(ng, p) - 50%/° 1 k =0,1,...,9} for all three of NystréomPCG, GaussPCG, and SparsePCG.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html
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Additional hyperparameters (Section 4.5.5) For all of the competitor methods (except
Shampoo), we use the default hyperparameters. For Shampoo, we modify the preconditioner update
frequency to occur every epoch, similar to SketchySGD. For SketchySGD, we set the momentum
parameter S to 0.9, just as in Adam. We compute stochastic gradients using a batch size of 128. For
learning rate scheduling, we use cosine annealing with restarts. For the restarts, we use an initial

budget of 15 epochs, with a budget multiplier of 2.

Default hyperparameters for SAGA/SVRG/L-Katyusha The theoretical analysis of SVRG,
SAGA, and L-Katyusha all yield recommended learning rates that lead to linear convergence. In
practical implementations such as scikit-learn [131], these recommendations are often taken as the
default learning rate. For SAGA, we follow the scikit-learn implementation, which uses the following

learning rate:

1 1
"‘max{sf;’ﬂunmm}’

where L is the smoothness constant of f and p is the strong convexity constant. The theoretical

analysis of SVRG suggests a step-size of n = where L is the expected-smoothness constant. We

Tz
have found this setting to pessimistic relative to the SAGA default, so we use the same default for
SVRG as we do for SAGA. For L-Katyusha the hyperparameters 6, and 6, are controlled by how we
specify L™, the reciprocal of the smoothness constant. Thus, the default hyperparameters for all
methods are controlled by how L is specified.

Now, standard computations show that the smoothness constants for least-squares and logistic

regression satisfy

Ntr

1
Llcast—squarcs < Z ||a’iH27
T i1

Nty

1
Llogistic < m ; ||a’l||2

The scikit-learn software package uses the preceding upper-bounds in place of L to set n in their
implementation of SAGA. We adopt this convention for setting the hyperparameters of SAGA, SVRG
and L-Katyusha. We display the defaults for the three methods in Table 4.7.

Table 4.7: Default hyperparameters for SVRG/SAGA /L-Katyusha.

Method\Dataset E2006-tfidf | YearPredictionMSD yolanda ijcnnl real-sim susy HIGGS
SVRG/SAGA 4.95-10" 1 1.01 - 10° 4.96- 1077 1.91-10° 1.93-10° 1.87 - 107 1.93 - 107
L-Katyusha 1.00 - 10° 4.85-10 1 9.98-10" 1 [ 2.52-10" 1 | 2.50-10" 1 | 2.57-10" " N/A

Grid search parameters (Sections 4.5.1 and 4.5.2) We choose the grid search ranges for
SVRG, SAGA, and L-Katyusha to (approximately) include the default hyperparameters across the

tested datasets (Table 4.7). For ridge regression, we set [1073,10?] as the search range for the
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learning rate in SVRG and SAGA, and [1072,10%] as the search range for the smoothness parameter
L in L-Katyusha. Similar to SVRG and SAGA, we set [1073,10?] as the search range for SGD. For
SLBFGS, we set the search range to be [107°,10°] in order to have the same log-width as the search
range for SGD, SVRG, and SAGA. In logistic regression, the search ranges for SGD/SVRG/SAGA,
L-Katyusha, and SLBFGS become [4 - 1073,4 - 102],[2.5 - 1073,2.5 - 1071], and [4 - 107°,4 - 10°],
respectively. The grid corresponding to each range samples 10 equally spaced values in log space.

The tuned hyperparmeters for all methods across each dataset are presented in Table 4.8.

Table 4.8: Tuned hyperparameters for competitor methods.

Method\Dataset E2006-tfidf | YearPredictionMSD-rf yolanda-rf ijennl-rf real-sim susy-rf
SGD 5.99 - 1071 2.15 - 10° 5.99 .10 1 8.62 - 10° 41072 8.62 - 100
SVRG 5.99 - 1071 2.15 - 10° 2.15 - 10° 8.62 - 10° 4107 8.62 - 100
SAGA 5.99 - 1071 2.15 - 10° 2.15 - 10° 8.62 - 10° 4107 8.62 - 100
L-Katyusha 2.15-10 1 1.29-10" T 2.15-10"1 | 1.94-10"2 25-10"° 3.32.10 2
SLBFGS 7741072 2.15-10"2 1.67-10° 1.11-10° 8.62-10"2 | 8.62-10" 2

Grid search parameters (Section 4.5.4) Instead of using a search range of [4- 10734 - 10?]
for SGD/SAGA, we narrow the range to [4-1072,4 - 10'] and sample 4 equally spaced values in log
space. The reason for reducing the search range and grid size is to reduce the total computational
cost of running the experiments on the HIGGS dataset. Furthermore, we find that 4 - 10° is the best
learning rate for HIGGS, while 4 - 10* leads to non-convergent behavior, meaning these search ranges

are appropriate.

Random search parameters (Section 4.5.5) We tune the learning rate for each optimizer
using 30 random search trials with log-uniform sampling in the range [1073,107!]. The tuning is

performed with Optuna [2].

4.11 Additional experimental results and figures

4.11.1 Sensitivity experiments

In this section, we investigate the sensitivity of SketchySGD to the rank hyperparameter r (Sec-
tion 4.11.2) and update frequency hyperparameter u (Section 4.11.3). In the first set of sensitivity
experiments, we select ranks r € {1,2,5,10,20,50} while holding the update frequency fixed at

u = 7;; (1 epoch)®. In the second set of sensitivity experiments, we select update frequencies
u € {0.5 HJ—‘ , m”—‘ ,2 H"—‘ ,D H"—‘ 7oo}, while holding the rank fixed at » = 10. We use the
g g g g

61f we set u = oo in ridge regression, which fixes the preconditioner throughout the run of SketchySGD, the potential
gain from a larger rank r may not be realized due to a poor initial Hessian approximation.
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datasets from Table 4.2. Each curve is the median performance of a given (r, u) pair across 10 random

seeds (except for susy, which uses 3 seeds), run for 40 epochs.

4.11.2 Effects of changing the rank

Looking at Figure 4.12, we see two distinct patterns: either increasing the rank has no noticeable
impact on performance (E2006-tfidf, real-sim), or increasing the rank leads to faster convergence
to a ball of noise around the optimum (YearPredictionMSD-rf). We empirically observe that these
patterns are related to the spectrum of each dataset, as shown in Figure 4.13. For example, the
spectrum of E2006-tfidf is highly concentrated in the first singular value, and decays rapidly, increased
rank does not improve convergence. On the other hand, the spectrum of YearPredictionMSD-rf is
not as concentrated in the first singular value, but still decays rapidly, so convergence improves as
we increase the rank from r = 1 to r = 10, after which performance no longer improves, in fact
it slightly degrades. The spectrum of real-sim decays quite slowly in comparison to E2006-tfidf or
YearPredictionMSD-rf, so increasing the rank up to 50 does not capture enough of the spectrum to
improve convergence. One downside in increasing the rank is that the quantity nsketchysep (4.3) can
become large, leading to SketchySGD taking a larger step size. As a result, SketchySGD oscillates
more about the optimum, as seen in YearPredictionMSD-rf (Figure 4.12). Last, Figure 4.12 shows
r = 10 delivers great performance across all datasets, supporting its position as the recommended

default rank. Rank sensitivity plots for yolanda-rf, ijennl-rf, and susy-rf appear in Section 4.11.1.

90 210 1 €2006 6.0 %101 yearpredictionmsd-rf 1020 1 real-sim
z
|
50
=
H
1.4+ T T T T 5.0+ T T T T 0.2 T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epochs Epochs Epochs
r=1 r=2 r=>5 r=10 r=20 r =50

Figure 4.12: Sensitivity of SketchySGD to rank 7.

4.11.3 Effects of changing the update frequency

In this section, we display results only for logistic regression (Figure 4.14), since there is no benefit
to updating the preconditioner for a quadratic problem such as ridge regression (Section 4.11.1): the

Hessian in ridge regression is constant for all w € RP. The impact of the update frequency depends
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Figure 4.13: Top 100 singular values of datasets after preprocessing.

on the spectrum of each dataset. The spectra of ijennl-rf and susy-rf are highly concentrated in
the top r = 10 singular values and decay rapidly (Figure 4.13), so even the initial preconditioner
approximates the curvature of the loss well throughout optimization. On the other hand, the spectrum
of real-sim decays quite slowly, and the initial preconditioner does not capture most of the curvature
information in the Hessian. Hence for real-sim it is beneficial to update the preconditioner, however
only infrequent updating is required, as an update frequency of 5 epochs yields almost identical
performance to updating every half epoch. So, increasing the update frequency of the preconditioner
past a certain threshold does not improve performance, it just increases the computational cost of the
algorithm. Last, u = (%ﬂ exhibits consistent excellent performance across all datasets, supporting

the recommendation that it be the default update frequency.

39 X10-1 ijennl-rf 50 %101 susy-rf 10 <101 real-sim

Training Loss

27k . . . 45l . — — — 1 2l . . . .
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Epochs Epochs Epochs
u=0.5 u=1.0 — u=20 u=>5.0 u =00

Figure 4.14: Sensitivity of SketchySGD to update frequency w.
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Figure 4.15: Adaptive SGD vs. SketchySGD. Adaptive SGD performs much worse then SketchySGD
on these two problems, despite employing the same learning rate strategy as SketchySGD. Thus,
SketchySGD’s improved performance over SGD comes from incorporating preconditioning, and not
from how it sets the learning rate.

4.11.4 SketchySGD default learning rate ablation

It is natural to ask how much of SketchySGD’s improved performance relative to SGD stems from
preconditioning. Indeed, it may be the case that SketchySGD’s gains arise from how it sets the
learning rate, and not from using approximate second-order information. To test this, we employ
SGD with the same learning rate selection strategy as SketchySGD, but with the preconditioned
minibatch Hessian replaced by the minibatch Hessian. We refer to this algorithm as Adaptive SGD
(AdaSGD).

Figure 4.15 shows the results of AdaSGD and SketchySGD on the E2006-tfidf and ijennl-rf
datasets. Adaptive SGD performs significantly worse then SketchySGD on these two problems, which
shows that SketchySGD’s superior performance over SGD is due to employing preconditioning. This
result is not too surprising. To see why, let us consider the case of the least-squares loss. In this
setting, if the subsampled Hessian is representative of the true Hessian, then nadasap = O(1/L).
Hence when the problem is ill-conditioned, the resulting stepsize will result in poor progress, which

is precisely what is observed in Figure 4.15.

4.11.5 SketchySGD improves the conditioning of the Hessian

In Section 4.5.1, we showed that SketchySGD generally converges faster than other first-order
stochastic optimization methods. In this section, we examine the conditioning of the Hessian before
and after preconditioning to understand why SketchySGD displays these improvements.

Recall from Section 4.1.1 that SketchySGD is equivalent to performing SGD in a preconditioned
space induced by P; = ﬁgj + pI. Within this preconditioned space, the Hessian is given by
Pj_1/2HPj_1/2, where H is the Hessian in the original space. Thus, if /{(P]fl/QHP]-_l/Q) < k(H), we
know that SketchySGD is improving the conditioning of the Hessian, which allows SketchySGD to

converge faster.
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Figures 4.16 and 4.17 display the top 500 eigenvalues (normalized by the largest eigenvalue) of
the Hessian H and the preconditioned Hessian Pj_l/ *H Pj_l/ % at the initialization of SketchySGD
(Nystrom) for both logistic and ridge regression. With the exception of real-sim, SketchySGD
(Nystrom) improves the conditioning of the Hessian by several orders of magnitude. This improved
conditioning aligns with the improved convergence that is observed on the ijennl-rf, susy-rf, E2006-
tfidf, YearPredictionMSD-rf, and yolanda-rf datasets in Section 4.5.1.

4.12 Scaling experiments

4.12.1 Second-order

For larger datasets, we expect the performance gap between SketchySGD and the selected second-
order methods to grow even larger, since these methods require full-gradient computations. We
increase the number of samples for each dataset in Table 4.2 (with the exception of susy-rf) by a
factor of 3 using data augmentation with Gaussian random noise, i.e., a dataset of size n¢, X p now
has size 3n¢, X p. The results are shown in Figures 4.18 and 4.19. When looking at performance with
respect to wall-clock time, SketchySGD is outperformed less often by the second-order methods; it
is only outperformed by SLBFGS (before it diverges) on ijennl-rf and RSN on yolanda-rf. Again,
SketchySGD performs much better than the competition on YearPredictionMSD-rf, which is a larger,

dense dataset.

4.12.2 PCG

The main costs of PCG are generally in (i) computing the preconditioner and (ii) performing matrix-
vector products with the data matrix. For larger datasets, we expect both of these costs to increase,
which should close the performance gap between SketchySGD and PCG. We increase the number of
samples for each ridge regression dataset by a factor of 3 as in Section 4.5.2; the results on these
augmented datasets are presented in Figure 4.20. We see that the performance gap closes slightly —
on E2006-tfidf, SketchySGD now performs comparably to JacobiPCG. In addition, the PCG methods

now take significantly more wall-clock time to reach the training loss attained by SketchySGD.
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Figure 4.16: Spectrum of the Hessian at epochs 0,10, 20, 30 before and after preconditioning in
lo-regularized logistic regression.
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Figure 4.17: Normalized spectrum of the Hessian before and after preconditioning in ridge regression.
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Chapter 5

Conclusions

5.1 Summary

This thesis introduces three novel algorithms for large-scale optimization: (i) Nystrom PCG, (ii)
NysADMM, and (iii) SketchySGD. The unifying principle underlying these methods is the observa-
tion that data and Hessian matrices in large-scale optimization often exhibit approximate low-rank
structure, enabling efficient approximation through low-rank matrices computed via Randomized
Numerical Linear Algebra (RandNLA). From these low-rank approximations, we construct pre-
conditioners that bring the dominant eigenvalues closer to the level of the well-conditioned tail
eigenvalues. By leveraging this technique, Nystrom PCG, NysADMM, and SketchySGD achieve
significant improvements over existing methods, in some cases yielding speed-ups of up to 58 times
faster than baseline approaches.

We anticipate these algorithms will prove valuable to practitioners seeking more efficient solutions
to large-scale optimization problems, while also providing a pathway to better address ill-conditioning
in this domain. Notably, Nystrém PCG has been incorporated into the recent RandLAPACK
library [118], a highly optimized set of routines poised to serve as a fundamental backbone for
randomized linear algebra, analogous to LAPACK’s role in deterministic numerical linear algebra [7].

Looking ahead, we briefly discuss extensions of the ideas developed in this work and poten-
tial directions for future research, underscoring the broader impact and ongoing relevance of this

contribution to the field of large-scale optimization.

5.2 Extensions

The ideas developed in this thesis have several extensions, which have led to further improvements in

large-scale optimization, that we now discuss.
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For Nystrom PCG in large-scale kernel kernel ridge regression, [42] employs a randomized
Nystrom preconditioner constructed via column sampling, utilizing the Randomized Pivoted Cholesky
algorithm introduced in [31]. This approach reduces the preconditioner computation cost to O(nf?)
while maintaining similar theoretical guarantees.

The NysADMM paper leaves open the question of convergence for non-quadratic objectives, as
well as what the explict rate of convergence of the algorithm is. The follow-up paper [59] resolves
these questions, and establishes explicit convergence rates under standard regularity assumptions for
a more general version of the model problem in (3.1), which now includes linear equality constraints.
Notably, these results demonstrate that the approximations in NysADMM do not compromise the
overall global convergence rate. Building on this, [41] extends NysADMM to develop GeNIOS, a
highly optimized solver for general convex composite optimization problems with efficient proximal
and projection oracles. Extensive numerical experiments demonstrate GeNIOS outperforms state-of-
the-art open-source ADMM solvers like COSMO [62] and OSQP [155], as well as the commercial
interior-point based solver MOSEK [6].

SketchySGD is limited to modest accuracy solutions due to its use of stochastic gradients, [56]
addresses this limitation in smooth and strongly convex settings. By combining SketchySGD
principles with variance-reduced stochastic gradient algorithms like SVRG [86], SAGA [37], and
Katyusha [4], they achieve global linear convergence. Moreover, they demonstrate local linear
convergence independent of the condition number, highlighting the benefits of preconditioning.

For massive-scale kernel ridge regression where n > 105, PCG becomes prohibitive due to the
O(n?) cost of computing a matvec and the O(nf) storage required for the preconditioner. Inspired
by SketchySGD, the works [140,141] develop approximate versions of sketch-and-project based on
Nystrom sketch-and-solve. These methods offer strong theoretical guarantees, outperform state-of-

the-art competitors, and can scale to datasets with over 10® training points.

5.3 Directions for future research

We conclude with a brief discussion of promising avenues for future work.

This thesis has developed scalable preconditioned algorithms that empirically improve convergence
and provably enhance it in certain special cases, such as when the objective is quadratic. An intriguing
direction for future research would be to develop similar algorithms that also improve the global rate
of convergence.

One possible approach for improving the global convergence of SketchySGD and its variance-
reduced variants [56], would be to change the base algorithm from Newton’s method to alternatives
such as the Hybrid Proximal Extragradient Algorithm (HPE). To obtain the best possible rate, it
is critical to incorporate acceleration into a stochastic HPE framework. A key challenge would be

determining how to adapt/generalize techniques such as Monteiro-Svaiter acceleration [28,115] to the
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stochastic setting. Recent work by [84] has shown an improved global convergence rate relative to
Newton’s method with linesearch, when using full gradients with a stochastic Hessian approximation
in the HPE algorithm, suggesting a promising direction for exploration.

An alternative route to establishing better global convergence rates, is to focus on more structured
function classes, as in [43,83,88], which develop fast second-order algorithms for quasi self-concordant
functions [12]. Applying the techniques developed in this thesis to obtain scalable stochastic analogues
of these algorithms that achieve improved global rates presents another interesting research direction.

A direction completely different from developing preconditioned algorithms that enjoy improved
global rates, is to develop more memory efficient preconditioned algorithms for deep learning. At
present the most popular deep learning optimizer is Adam, which uses momentum and a diagonal
preconditioner based on gradient whitening. However, recent work [89] has shown when properly
tuned, Shampoo can outperform Adam, demonstrating the benefit of using more sophisticated
preconditioners than diagonal ones. Unfortunately, Shampoo’s high memory requirements make it
prohibitively expensive for the large models used in production today [51]. An exciting challenge
would be to extend the techniques developed in this thesis to create a more memory-efficient version

of Shampoo while maintaining its performance advantages.
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