
RANDOMIZED NUMERICAL LINEAR ALGEBRA

FOR LARGE-SCALE OPTIMIZATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF MANAGEMENT SCIENCE AND

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zachary Frangella

June 2025

© Copyright by Zachary Frangella 2025

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Professor Madeleine Udell) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Professor Aaron Sidford)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Professor Mert Pilanci)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

Large-scale optimization problems arising from the big data era pose significant challenges, as

traditional algorithms become prohibitively expensive due to their unfavorable scaling with problem

size. While first-order methods like gradient descent offer improved scalability, they often struggle

with ill-conditioned problems, leading to slow convergence. This thesis addresses this challenge by

developing scalable preconditioning techniques that improve the convergence of first-order methods

on ill-conditioned problems without sacrificing computational efficiency. We introduce three novel

algorithms: Nyström Preconditioned Conjugate Gradients (Nyström PCG) for solving large-scale

symmetric positive definite linear systems, NysADMM for composite optimization problems, and

SketchySGD, a stochastic second-order method for machine learning tasks. These algorithms

leverage randomized numerical linear algebra to efficiently construct preconditioners from low-rank

approximations, resulting in methods that are more robust to problem conditioning than existing

first-order algorithms. Theoretical analyses and extensive numerical experiments demonstrate the

efficacy of these approaches across a range of applications, including ridge regression, kernel ridge

regression, and logistic regression, often outperforming state-of-the-art methods. This work bridges

the gap between scalability and fast convergence, offering promising directions for tackling large-scale

optimization problems in the big data era.

iv

Acknowledgments

I’m very grateful for all the people who supported me throughout my PhD, and have helped make

the experience so enjoyable.

Advisor: Madeleine Udell.

I feel extremely fortunate to have been advised by Madeleine during my PhD. We have had an

incredibly productive collaboration during these past five years. Madeleine brings an unmatched

enthusiasm to research, which makes her very fun to work with and to discuss interesting ideas with.

Working with Madeleine teaches you how to be a world class researcher. She possesses an

exceptional gift for clarity when it comes to presenting complex ideas. I am always impressed by

how concisely she can present a complex technical idea or represent it in an intuitive picture. I have

benefited greatly from this, and have become much better at communicating ideas clearly and simply

thanks to her. Madeleine has also been extremely supportive of students development as independent

researchers. She allows students to present ideas for projects that interest them, and then helps them

craft it into something concrete or suggests interesting ways to improve the idea. This approach helps

you grow as researcher, as it allows you to pursue original ideas while still having a good support net

if you run into difficulties.

Research aside, Madeleine genuinely cares about each of her students as people, and always does

her best to help them achieve their goals. Madeleine’s mentorship has helped shape my approach to

research and helped me develop skills that will be invaluable in my future career. She is an excellent

collaborator and a model mentor. I am very happy to have had her as my advisor.

Orals committee: Dan Iancu, Mert Pilanci, Aaron Sidford, and Joel Tropp.

I appreciate each member serving on the committee and providing their thoughtful feedback.

Dan, it was great being able to TA the CME 307 optimization course for you and Madeleine this

past Fall quarter. I am impressed by your deep geometric intuition for many topics in optimization.

Like, Madeleine, you have knack for coming up with good figures for representing complicated ideas

and making them more digestible for the students. I am very thankful to have had you serve as chair

of my committee.

v

Mert, I appreciate your enthusiasm for research and your creativity at generating new and

interesting ideas. It was very fun to have the opportunity to collaborate with you, as I had long

enjoyed your work before coming to Stanford.

Aaron, it has been great getting to know you since coming to Stanford, as I greatly admire

your research. I always enjoy our conversations and your great paper recommendations, which are

always fun reads! I will miss waving to you from the second floor as you walk across the third floor

balustrade.

Joel, it has been a great honor to have you as a collaborator. You have incredible intuition

for many deep mathematical topics, and like Madeleine are able to communicate them clearly and

concisely. Your papers in randomized linear algebra, are what inspired me to work in this area, so I

feel very grateful for having been able to collaborate with you.

Collaborators: Tamara Broderick, Micha l Dereziński, Theo Diamandis, Mateo Diaz, Ethan

Epperly, Shaghayegh Fazliani, Miria Feng, Sachin Garg, Weimu Lei, Lu Lu, Parth Nobel, Mert

Pilanci, Pratik Rathore, Bartolomeo Stellato, Will Stephenson, Jingruo Sun, Joel Tropp, Rob Webber,

Jiaming Yang, and Shipu Zhao.

The opportunity to collaborate with so many wonderful colleagues, ranging from Masters and PhD

students to senior faculty, has been one of my favorite experiences from my PhD. I’ve been fortunate

to work with some of the best people in applied mathematics, computer science, optimization, and

statistics. Without these collaborations, the PhD wouldn’t have nearly been as enjoyable, and I

would have learned a lot less.

I would like to give a special shout-out to Pratik Rathore and Shipu Zhao, the fellow student

collaborators I worked with most during my PhD. Our collaborations have been fruitful, and it has

been a pleasure to work with both of you. Aside from work, it has been a lot of fun hanging out with

you, you both have excellent senses of humor. I will miss the dinners and fun late night conversations.

I am very fortunate to have you two as friends and collaborators. If the chance comes to collaborate

with either of you again in the future, I would happily take it.

Udell Group labmates: Ya-Chi Chu, Lijun Ding, Shaghayegh Fazliani, Wenzhi Gao, Weimu Lei,

Pratik Rathore, Jingruo Sun, Ali Teshnizi, Mike Van Ness, Miaolan Xie, Chengrun Yang, Shipu

Zhao, and Yuxuan Zhao.

During my time in Madeleine’s lab, I’ve had the fortune of being surrounded by brilliant peers in

a variety of different disciplines. It has been wonderful learning from them in group meetings and

offline discussions. I look forward to seeing what direction the lab moves in next!

Faculty mentors at Cornell: David Bindel, Anil Damle, and Alex Townsend.

David, Anil, and Alex form the core of the scientific computing and numerical analysis group at

Cornell. I’m fortunate to have been able to learn from all three of them.

vi

I thank David for his inspiring class on matrix computations, which emphasized the interplay of

mathematics and intelligent algorithmic thinking, and really shows the elegance of the subject. I’m

also thankful for David’s service as director of CAM. He did a great job shepherding the students

through the tough times of Covid. David also has the most spectacular collection of textbooks in his

office, a feat that myself and several other CAMsters hope to match someday.

I am grateful to Anil Damle for his excellent course on Datasparse Matrix Computations, the

sequel to David’s course. It was Anil who first introduced me to randomized numerical linear algebra

in this course, and provided the initial foundation for my PhD research. Anil is a true expert in

numerical linear algebra, and it was joy to learn from him about topics such as rank-structured

matrices, low-rank matrix completion, and compressed sensing.

I’ve been very fortunate to have known Alex from the beginning of my PhD. He has always

been incredibly encouraging and gave me great advice when I was starting out. In particular, I first

learned about Madeleine from him. Alex is also a spectacular mathematician and teacher. In my

first year I had the great privilege of taking an inspiring class on functional analysis from him. He

brought a unique perspective to the course, including non-traditional topics from approximation

theory and machine learning. Alex introduced me to kernel learning in this class, a topic I ended

up working quite diligently on during my PhD. I am extremely thankful to know Alex, and to have

learned so much from him.

Faculty mentors at RPI: Gregor Kovacic, Peter Kramer, Fengyan Li, and Harry McLaughlin.

I thank you all for being such exceptional professors and helping me get to where I am now. I

want to give special thanks to Fengyan Li and the late Harry McLaughlin. I thank Fengyan for her

excellent mentorship, and for introducing me to research. Harry, I thank you for your incredible

generosity, and your support for me as soon as I arrived at RPI. You helped me deal with bureaucratic

“red-tape” numerous times. Discussing mathematical and scientific ideas with you was always a joy. I

feel very fortunate to have had you as a friend and mentor.

Middle and High school teachers: Seamus Hodgekinson, William Russell, and Robert Weaver

In addition to excellent mentors and teachers at the university level, I’ve been fortunate to have

excellent teachers at the middle and high school level.

I thank Mr. H for making math and science so exciting, and inspiring me to pursue it further. It

is no easy task to get eighth graders excited about math and science, but he did, while also making

it look effortless.

Mr. Russell for the excellent history and mythology courses and constant encouragement to

continue learning outside the classroom. I greatly enjoyed our conversations on everything from

military history to finance.

I am grateful to Mr. Weaver for his impeccable taste in literature. The English and Philosophy

courses I took with him were great fun, and always encouraged original thinking and creativity, two

vii

crucial traits of any good researcher.

Friends: Tricia Agarwal, Catherine Chen, Ya-Chi Chu, Matt Davidow, Phil Doldo, Wenzhi Gao,

Mallory Gaspard, Andrew Horning, Katherine Lee, Weimu Lei, Yingxi Li, Jiayi Liu, Yueyang Liu, Si

Yi Meng, Shriya Nagpal, Gokul Nair, Parth Nobel, Shawn Ong, Dongping Qi, Gauri Pidatala, Xueye

Ping, Pratik Rathore, Lily Reeves, Thomas Reeves, Max Ruth, Tianyi Shi, Jingruo Sun, MingYi

Wang, Anders Wikum, Wanqiao Xu, Chengrun Yang, Greg Zanotti, Eva Zhang, Xiyue Zhang, and

Shipu Zhao.

I am extremely thankful for the great friends I’ve had throughout my PhD. They are a major

reason for why the PhD has been such a fun experience.

I have had countless good times with the CAM crew at Cornell. From the dinners at Sumo,

to the numerous boba hangouts, and the occasional watching of Gokul playing Minecraft in the

office. I thank the Reeves for being the best officemates one could ask for. I have had countless great

conversations with you both, and lots of laughs, or as Lily would say lots of lols. I will never forget

our memorable and completely spontaneous Thanksgiving dinner at Nobu! Shriya, thank you for all

the fun conversations, support, and your infallible sense of humor. You always manage to get into the

funniest situations. I know I can always count on you for a laugh. Phil and MingYi, I greatly enjoyed

our hangouts. Your senses of humor both complement mine. It was great sharing crazy stories about

RPI or funny events that arise while TAing. Phil, you will know what this means: drose. Xiyue,

thank you for all the fun chats, and your encouragement. It was always enjoyable learning about

your research, as it was in an area very different from my own. Mallory, I am incredibly fortunate to

have had you as a friend at RPI and Cornell. You bring a positive can do attitude wherever you

go, that we can all learn from. I appreciate all your support and encouragement throughout our

academic careers. Your continued presence at Cornell made the PhD experience a lot more fun, both

for myself, and the rest of the CAMsters.

Since moving to Stanford I have met many new wonderful people as well as gotten to know people

already in the lab much better! Mike and Tricia, thank you both for the wonderful parties you’ve

hosted at your apartment. I’m very glad since moving to Stanford that I’ve gotten to know both of

you better. At Cornell, Covid and being on different ends of the campus had made that difficult.

Anders, Eva, and Yingxi, it has been great having three more Cornellians around! Anders, you have

been a great roommate these past two years. I will miss hearing your research updates, or you telling

me when you made a breakthrough on an interesting problem you’ve been working on. Eva, I will

miss your funny stories, and your reactions to the movies and TV shows Anders and I would show

you. Yingxi, I’m so glad you were able to join us at Stanford for your PhD. I have always enjoyed

our conversations and always appreciate the positive attitude you bring. Xueye, thank you for all

the fun hangouts, conversations, and your boba scouting skills. There is no better way to make a

hangout more fun then to pair it with good boba.

viii

Cousins: I am thankful to my cousins Sean and Rylan for all the fun and stimulating conversations

over the years, ranging from math and physics, to positing our latest guesses as to when the new A

Song of Ice and Fire book will be out (though after 14 years I think we might have finally put this

topic to rest). It was very generous of you both to talk to a high schooler about everything from

quantitative finance to quantum mechanics, at what was supposed to be a relaxed family gathering.

These conversations were always enlightening, and encouraged me to continue pursuing independent

study outside of the classroom.

Parents: Catherine Frangella and Michael Frangella.

Both of you have constantly supported and encouraged me since I was young. My curiosity and

love of reading both stem from the positive learning environment you created for me. In addition to

your appreciation and encouragement of intellectual curiosity, you both happen to be very fun people,

which ensures nothing is ever dull when I am with you. I am very fortunate to have such supportive

parents. Without your love and support over the years, none of this would have been possible.

ix

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions and organization . 2

1.3 Other publications and projects . 3

2 Randomized Nyström Preconditioning 4

2.1 Motivation . 4

2.1.1 The preconditioner . 4

2.1.2 Guarantees . 6

2.1.3 Example: Ridge regression . 7

2.1.4 Comparison to prior randomized preconditioners 8

2.1.5 Roadmap . 8

2.1.6 Notation . 8

2.2 The Nyström approximation . 9

2.2.1 Definition and basic properties . 9

2.2.2 Randomized Nyström approximation . 10

2.3 Approximating the regularized inverse . 12

2.4 Nyström sketch-and-solve . 13

2.4.1 Overview . 13

2.4.2 Guarantees and deficiencies . 14

2.4.3 History . 14

2.5 Nyström Preconditioned Conjugate Gradients . 15

2.5.1 The preconditioner . 15

2.5.2 Nyström PCG . 16

2.5.3 Analysis of Nyström PCG . 21

x

2.5.4 Practical parameter selection . 25

2.6 Applications and experiments . 27

2.6.1 Preliminaries . 27

2.6.2 Ridge regression . 27

2.6.3 Approximate cross-validation . 29

2.6.4 Large-scale ALOOCV experiments . 32

2.6.5 Kernel ridge regression . 33

2.7 Conclusion . 38

2.8 Proofs not appearing in the main chapter . 38

2.8.1 Proof of Proposition 2.2.2 . 38

2.8.2 Proof of Proposition 2.2.2 . 39

2.8.3 Proof of Squared Chevet . 40

2.8.4 Proof of Proposition 2.3.1 . 41

2.8.5 Proof Theorem 2.4.2 . 42

2.8.6 Proof of statements for the optimal low-rank preconditioner P⋆ 43

2.8.7 Proof of Corollary 2.5.2 . 47

2.8.8 Proof of Theorem 2.5.5 . 48

2.8.9 Proof of Proposition 2.5.7 . 49

2.9 Additional numerical results . 50

2.9.1 Ridge regression experiments . 50

2.10 Adapative rank selection via a-posteriori error estimation 50

2.10.1 Randomized powering algorithm . 50

2.11 Additional experimental details . 51

2.11.1 Ridge regression experiments . 51

2.11.2 ALOOCV . 52

2.11.3 Kernel ridge regression . 52

2.12 Additional numerical results . 53

2.12.1 ALOOCV . 53

3 NysADMM 55

3.1 Introduction . 55

3.1.1 Contributions . 56

3.1.2 Related work . 56

3.1.3 Organization of the chapter . 57

3.1.4 Notation and preliminaries . 57

3.2 Algorithm . 58

3.2.1 Inexact linearized ADMM . 58

3.2.2 Solving the w-subproblem with Nyström PCG 59

xi

3.2.3 NysADMM . 59

3.2.4 AdaNysADMM . 60

3.3 Applications . 61

3.3.1 Elastic net . 61

3.3.2 Regularized logistic regression . 61

3.3.3 Support vector machine . 62

3.4 Convergence analysis . 62

3.5 Numerical experiments . 65

3.5.1 Lasso . 66

3.5.2 l1-Regularized logistic regression . 68

3.5.3 Support vector machine . 68

3.6 Conclusion . 69

3.7 Proofs not appearing in the main chapter . 69

3.7.1 Preliminaries . 70

3.7.2 Proofs of Theorem 3.4.1 and Corollary 3.4.2 72

3.7.3 Proof of Theorem 3.4.3 . 73

3.7.4 Proof of Theorem 3.4.4 . 75

3.8 AdaNysADMM Algorithm . 76

4 SketchySGD 77

4.1 Introduction . 77

4.1.1 SketchySGD . 79

4.1.2 Roadmap . 81

4.1.3 Notation . 81

4.2 SketchySGD: efficient implementation and hyperparameter selection 82

4.3 Comparison to previous work . 84

4.4 Theory . 86

4.4.1 Assumptions . 87

4.4.2 Quadratic regularity . 88

4.4.3 Quality of SketchySGD preconditioner . 89

4.4.4 Controlling the variance of the preconditioned stochastic gradient 91

4.4.5 Convergence of SketchySGD . 92

4.4.6 When does SketchySGD improve over SGD? 96

4.4.7 Proofs of Theorem 4.4.13 and Theorem 4.4.15 97

4.5 Numerical experiments . 99

4.5.1 SketchySGD outperforms first-order methods 100

4.5.2 SketchySGD (usually) outperforms second-order methods 102

4.5.3 SketchySGD (usually) outperforms PCG . 103

xii

4.5.4 SketchySGD outperforms competitor methods on large-scale data 106

4.5.5 Tabular deep learning with multilayer perceptrons 106

4.6 Conclusion . 107

4.7 Additional algorithms . 108

4.7.1 Modifications for deep learning . 109

4.8 Proofs not appearing in the main chapter . 110

4.8.1 Proof that SketchySGD is SGD in preconditioned space 110

4.8.2 Proof of Lemma 4.4.4 . 111

4.8.3 Proof of Lemma 4.4.6 . 111

4.8.4 Proof of Proposition 4.4.7 . 112

4.8.5 Proof of Lemma 4.4.8 . 116

4.8.6 Proof of Proposition 4.4.9 and Corollary 4.4.12 117

4.8.7 Proof of Lemma 4.4.14 . 118

4.8.8 Proof of Proposition 4.4.10 . 118

4.9 Lower bound on condition number in Table 4.2 . 120

4.10 Experimental details . 120

4.11 Additional experimental results and figures . 124

4.11.1 Sensitivity experiments . 124

4.11.2 Effects of changing the rank . 125

4.11.3 Effects of changing the update frequency . 125

4.11.4 SketchySGD default learning rate ablation . 127

4.11.5 SketchySGD improves the conditioning of the Hessian 127

4.12 Scaling experiments . 128

4.12.1 Second-order . 128

4.12.2 PCG . 128

5 Conclusions 132

5.1 Summary . 132

5.2 Extensions . 132

5.3 Directions for future research . 133

Bibliography 135

xiii

List of Tables

2.1 Regularized least-squares: Complexity of prior randomized preconditoning methods

vs. Nyström PCG. 20

2.2 Ridge regression: Dataset statistics. 28

2.3 Ridge regression: Nyström PCG versus AdaIHS and R&T PCG. 31

2.4 ALOOCV: Datasets and experimental parameters. 31

2.5 ALOOCV: Small datasets. 32

2.6 ALOOCV: Large datasets. 33

2.7 Kernel ridge regression: Datasets and experimental parameters. 35

2.8 Kernel ridge regression: Ranks, iteration count, and total runtime. 37

2.9 Ridge regression: Test set error. 50

2.10 Ridge regression: Experimental parameters. 52

2.11 ALOOCV: Additional details for large-scale experiments. 53

3.1 Complexity comparison for a quadratic loss with Hessian H. 60

3.2 Statistics of experiment datasets. 65

3.3 esults for low precision lasso experiment. 66

3.4 Results for high precision lasso experiment. 67

3.5 Results for l1-regularized logistic regression experiment. 68

3.6 Results of SVM experiment. 69

4.1 Comparison of stochastic 2nd-order methods. 86

4.2 Datasets and summary statistics. 100

4.3 10th and 90th quantiles for final test accuracies. 107

4.4 Dimensions of ridge regression datasets. 121

4.5 Dimensions of logistic regression datasets. 121

4.6 Dimensions of deep learning datasets. 122

4.7 Default hyperparameters for SVRG/SAGA/L-Katyusha. 123

4.8 Tuned hyperparameters for competitor methods. 124

xiv

List of Figures

2.1 Ridge regression: CG versus Nyström PCG. 8

2.2 Comparable matvecs does not mean comparable runtime. 19

2.3 Ridge regression: Adaptive sketch size selection. 29

2.4 Ridge regression: Runtime and residual. 30

2.5 Falkon saturates. 38

3.1 Solution times for varying tolerance ϵ on STL-10. 67

4.1 SketchySGD outperforms standard stochastic gradient optimizers. 78

4.2 Comparisons to first-order methods with default learning rates on l2-regularized logistic

regression. 101

4.3 Comparisons to first-order methods with default learning rates on ridge regression. . 102

4.4 Comparisons to first-order methods with tuned learning rates on l2-regularized logistic

regression. 103

4.5 Comparisons to first-order methods with tuned learning rates on ridge regression. . . 104

4.6 Comparisons to second-order methods on l2-regularized logistic regression. 104

4.7 Comparisons to second-order methods on ridge regression. 105

4.8 Comparisons to PCG methods on ridge regression. 105

4.9 Comparison between SketchySGD and SAGA with default learning rate. 106

4.10 Comparison between SketchySGD, SGD and SAGA with tuned learning rates. . . . 107

4.11 Test accuracies for SketchySGD and competitor methods on tabular deep learning tasks.108

4.12 Sensitivity of SketchySGD to rank r. 125

4.13 Top 100 singular values of datasets after preprocessing. 126

4.14 Sensitivity of SketchySGD to update frequency u. 126

4.15 Adaptive SGD vs. SketchySGD. 127

4.16 Spectrum of the Hessian at epochs 0, 10, 20, 30 before and after preconditioning in

l2-regularized logistic regression. 129

4.17 Normalized spectrum of the Hessian before and after preconditioning in ridge regression.130

xv

4.18 Comparisons to second-order methods on l2-regularized logistic regression with aug-

mented datasets. 130

4.19 Comparisons to second-order methods on ridge regression with augmented datasets. 131

4.20 Comparisons to PCG methods on ridge regression with augmented datasets. 131

xvi

Chapter 1

Introduction

1.1 Motivation

The “Big Data” era poses major challenges for optimization, as it leads to optimization problems

of unprecedented size. Even seemingly simple machine learning tasks, such as predicting user click

behavior or detecting malicious URLs, can result in optimization problems with decision variables

containing millions of dimensions. Traditional optimization algorithms, including Newton’s method

for unconstrained problems and interior point methods for constrained problems, typically scale

cubically (or worse) with the size of the decision variable. Thus, traditional algorithms become

prohibitively expensive on large high-dimensional optimization problems.

In the wake of these scalability challenges, first-order algorithms such as gradient descent have

gained popularity due to their favorable per-iteration cost, which scales at most linearly with problem

size, and their capacity to leverage the massive parallelism available in modern computing hardware.

While first-order methods elegantly address the scalability challenges of big data, they introduce a

new problem arising from their convergence properties. Namely, the convergence rate of first-order

methods is governed by the problem’s condition number [122], which is determined by the underlying

data. For matrices, the condition number is defined as the ratio of its largest to smallest singular

value. In the case of smooth strongly convex functions, the condition number is defined as the

worst-case condition number of the Hessian matrix across the domain.

The condition number significantly impacts the convergence speed of first-order methods. When

the condition number is modest, first-order methods can achieve low to moderate accuracy solutions in

reasonable time, which suffices for many large-scale applications, particularly in machine learning [22].

However, a large condition number dramatically slows convergence, making it challenging to reach

even modest accuracy.

The sensitivity of first-order algorithms to ill-conditioning is particularly problematic in the

context of big data, as large-scale data matrices and Hessians are often ill-conditioned. In particular,

1

CHAPTER 1. INTRODUCTION 2

they typically exhibit approximate low-rank structure, where a small proportion of large singular

values dominate the rest, leading to large condition numbers. Consequently, first-order methods can

struggle to efficiently provide acceptable solutions in many real-world scenarios.

While the preceding discussion presents a pessimistic outlook, suggesting that slow convergence is

the inevitable price for scalability, this dissertation demonstrates that this trade-off is not fundamental.

We develop scalable algorithms that enjoy better practical performance on ill-conditioned problems

by leveraging preconditioning, which transforms the problem to a new geometry where the condition

number is closer to unity.

Classic algorithms like Newton’s method and BFGS employ preconditioning, enabling them to

achieve fast local convergence independent of the condition number. However, the various costs

associated with the preconditioner are precisely why these methods fail to scale. The key insight we

leverage in this thesis is that the source of ill-conditioning in data matrices and Hessians arising in

large-scale optimization primarily comes from dominant outlying eigenvalues. Therefore, to improve

conditioning, we only need to reduce these dominant eigenvalues.

In this thesis, we apply randomized numerical linear algebra (RandNLA) to efficiently construct

preconditioners from randomized low-rank approximations that provably improve problem condi-

tioning. By integrating this technique with existing ideas from optimization, we obtain new scalable

algorithms that are much more robust to problem conditioning than existing first-order algorithms

in the literature. The approach developed here, helps bridge the gap between scalability and fast

convergence, offering a useful set of tools for practitioners, and provides a promising direction for

tackling large-scale optimization problems in the big data era.

1.2 Contributions and organization

The core contributions of this thesis are three new algorithms: (i) Nyström Preconditioned Conjugate

Gradients (SIMAX ’23) (ii) NysADMM (ICML ’22), and (iii) SketchySGD (SIMODS ’24), which

were developed by the author and collaborators in the papers [57, 58, 181]. Each paper is the subject

of its own chapter. We summarize the content and contributions of each chapter below:

Chapter 2. We develop the randomized Nyström preconditioner for solving large-scale symmetric

positive definite linear systems via preconditioned conjugate gradients (PCG), leading to the Nyström

Preconditioned Conjugate Gradients Algorithm (Nyström PCG) In particular, we introduce the idea

of constructing a preconditioner from a randomized Nyström approximation of a matrix, which will

prove central to algorithms developed in this thesis. We provide a detailed performance analysis of the

preconditioner, and show that when appropriately constructed, PCG with the randomized Nyström

preconditioner is guaranteed to converge at a fast linear rate, independent of the condition number.

A systematic principled way of setting hyperparameters is presented, and experiments on large-scale

CHAPTER 1. INTRODUCTION 3

ridge and kernel ridge regression tasks shows Nyström PCG exhibits improved performance relative

to CG and other randomized preconditioning techniques.

Chapter 3. The Alternating Directions Method of Multipliers (ADMM) algorithm is one of

the most effective first-order algorithms for large-scale composite optimization. Unfortunately, at

each iteration ADMM involves solving an expensive subproblem, that is generally ill-conditioned.

Building off of Chapter 2, we apply function linearization to obtain a subproblem that reduces to

solving a large symmetric positive-definite linear system. Nyström PCG is then applied to solve

this system efficiently. Numerical experiments show that NysADMM can yield 3− 58× speedups

relative to bespoke benchmark algorithms and solvers like GLMNet [60], LIBSVM [29], SAGA [37],

and Accelerated Proximal Gradient with restarts [127].

Chapter 4. We introduce SketchySGD, a stochastic second-order method that uses randomized

low-rank approximations of the subsampled Hessian to estimate curvature, along with an automated

stepsize. Theoretical analysis shows SketchySGD converges linearly to a small ball around the

minimum with a fixed stepsize, and outperforms SGD on ill-conditioned least-squares problems.

Empirical results on ridge and logistic regression tasks demonstrate that SketchySGD, with default

hyperparameters, matches or exceeds the performance of tuned stochastic gradient methods and

preconditioned conjugate gradient. Notably, SketchySGD solves an ill-conditioned logistic regression

problem with a 840GB data matrix, where competitors fail. SketchySGD’s out-of-the-box performance

and robustness to ill-conditioning distinguishes it from other methods that require careful tuning

and struggle with ill-conditioned problems.

Chapter 5. In this chapter, we summarize the contributions of the thesis and discuss works that

extend the ideas developed here. In particular, we discuss extensions to massive scale kernel ridge

regression and Gaussian processes, variance reduced algorithms for finite-sum minimization, and

extensions of NysADMM to a general convex composite optimization solver.

1.3 Other publications and projects

In addition to the chapters that are the subject of this thesis, I have produced four other publications

during my PhD: [156] (NeurIPS ’21), [142] (ICML ’24, Oral), [56] (JMLR ’24), [52] (NeurIPS ’24). I

also have six preprints in submission: [42], [41], [59], [141], [159], and [140].

Chapter 2

Randomized Nyström

Preconditioning

2.1 Motivation

In their elegant 1997 textbook on numerical linear algebra [161], Trefethen and Bau write,

“In ending this book with the subject of preconditioners, we find ourselves at the

philosophical center of the scientific computing of the future... Nothing will be more

central to computational science in the next century than the art of transforming a

problem that appears intractable into another whose solution can be approximated

rapidly. For Krylov subspace matrix iterations, this is preconditioning... we can only

guess where this idea will take us.”

The next century has since arrived, and one of the most fruitful developments in matrix computa-

tions has been the emergence of new algorithms that use randomness in an essential way. This thesis

chapter explores a topic at the nexus of preconditioning and randomized numerical linear algebra.

We will show how to use a randomized matrix approximation algorithm to construct a preconditioner

for an important class of linear systems that arises throughout data analysis and scientific computing.

2.1.1 The preconditioner

Consider the regularized linear system

(A + µI)x = b where A ∈ Rn×n is symmetric psd and µ ≥ 0. (2.1)

4

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 5

Here and elsewhere, psd abbreviates the term “positive semidefinite.” This type of linear sys-

tem emerges whenever we solve a regularized least-squares problem. We will design a class of

preconditioners for the problem Equation (2.1).

Throughout this chapter, we assume that we can access the matrix A through matrix–vector

products x 7→ Ax, commonly known as matvecs. The algorithms that we develop will economize

on the number of matvecs, and they may not be appropriate in settings where matvecs are very

expensive or there are cheaper ways to interact with the matrix.

For a rank parameter s ∈ N, the randomized Nyström approximation of A takes the form

Ânys = (AΩ)(ΩTAΩ)†(AΩ)T where Ω ∈ Rn×s is standard normal. (2.2)

This matrix provides the best psd approximation of A whose range coincides with the range of the

sketch AΩ. The randomness in the construction ensures that Ânys is a good approximation to the

original matrix A with high probability [109, Sec. 14].

We can form the Nyström approximation with sketch size s, using s matvecs with A, plus some

extra arithmetic. See Algorithm 13 for the implementation details.

Given the eigenvalue decomposition Ânys = U Λ̂UT of the randomized Nyström approximation,

we construct the Nyström preconditioner:

P =
1

λ̂s + µ
U(Λ̂ + µI)UT + (I − UUT). (2.3)

In a slight abuse of terminology, we refer to s as the rank of the Nyström preconditioner. The key

point is that we can solve the linear system Py = c very efficiently, and the action of P−1 dramatically

reduces the condition number of the regularized matrix Aµ = A + µI.

We propose to use Equation (2.3) in conjunction with the preconditioned conjugate gradient

(PCG) algorithm. Each iteration of PCG involves a single matvec with A, and a single linear solve

with P . When the preconditioned matrix P−1Aµ has a modest condition number, the algorithm

converges to a solution of Equation (2.1) very quickly. See Algorithm 3 for pseudocode for Nyström

PCG.

The idea of using the randomized Nyström approximation to construct the preconditioner in

Equation (2.3) was suggested by P.-G. Martinsson in the survey [109, Sec. 17], but it has not

been implemented or analyzed. An earlier (folklore) preconditioner with similar motivation uses

a partial eigendecomposition to form a preconditioner of the form Equation (2.3); for instance,

in [65], this idea is called a “deflating preconditioner”. However, as computing an exact partial

eigendecomposition is prohibitively expensive for large problems, these deflating preconditioners are

rarely used. Randomized numerical linear algebra, such as the randomized Nyström approximation

used here, provides the key ingredient to make such a preconditioner practical.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 6

2.1.2 Guarantees

This chapter contains the first comprehensive study of the preconditioner Equation (2.3), including

theoretical analysis and testing on prototypical problems from data analysis and machine learning.

One of the main contributions is a rigorous method for choosing the rank s to guarantee good

performance, along with an adaptive rank selection procedure that performs well in practice.

A key quantity in our analysis is the effective dimension of the regularized matrix A + µI. That

is,

dµeff(A) = tr
(
A(A + µI)†

)
=

n∑
j=1

λj(A)

λj(A) + µ
, (2.4)

where (A + µI)† is the Moore-Penrose pseudoinverse. Our definition differs slightly from the

literature [3, 13] which uses (A + µI)−1, the definition we use allows for the effective dimension to be

defined even when µ = 0, in which case it equals the rank of A. The effective dimension measures the

degrees of freedom of the problem after regularization. It may be viewed as a (smoothed) count of

the eigenvalues larger than µ. Many real-world matrices exhibit strong spectral decay, so for µ > 0

the effective dimension is typically much smaller than the nominal dimension n. As we will discuss,

the effective dimension also plays a role in a number of machine learning papers [3, 9, 13, 33,96] that

consider randomized algorithms for solving regularized linear systems.

Remark 2.1.1. Often when the underlying matrix A is clear from context, we shall omit the dependence

upon A in the effective dimension, and simply write dµeff.

Our theory tells us the randomized Nyström preconditioner P is successful when its rank s is

proportional to the effective dimension.

Theorem 2.1.2 (Randomized Nyström Preconditioner). Let A ∈ S+n (R) be a psd matrix, and write

Aµ = A + µI where the regularization parameter µ > 0. Define the effective dimension dµeff(A) as

in Equation (2.4). Construct the randomized preconditioner P from Equations (2.2) and (2.3) with

rank parameter s = 2 ⌈1.5 dµeff(A)⌉ + 1. Then the condition number of the preconditioned system

satisfies

E
[
κ2(P−1/2AµP

−1/2)
]
< 28. (2.5)

Theorem 2.1.2 is a restatement of Theorem 2.5.1.

Simple probability bounds follow from Equation (2.5) via Markov’s inequality. For example,

P
{
κ2(P−1/2AµP

−1/2) ≤ 56
}
> 1/2.

The main consequence of Theorem 2.1.2 is a convergence theorem for PCG with the randomized

Nyström preconditioner.

Corollary 2.1.3 (Nyström PCG: Convergence). Construct the preconditioner P as in Theorem 2.1.2,

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 7

and condition on the event {κ2(P−1/2AµP
−1/2) ≤ 56}. Solve the regularized linear system Equa-

tion (2.1) using Nyström PCG, starting with an initial iterate x0 = 0. After t iterations, the relative

error δt satisfies

δt :=
∥wt − w⋆∥Aµ

∥w⋆∥Aµ

< 2 · (0.77)
t

where Aµw⋆ = b.

The error norm is defined as ∥u∥2Aµ
= uTAµu. In particular, t ≥ ⌈3.9 log(2/ϵ)⌉ iterations suffice to

achieve relative error ϵ.

Although Theorem 2.1.2 gives an interpretable bound for the rank s of the preconditioner, we

cannot instantiate it without knowledge of the effective dimension. To address this shortcoming, we

have designed adaptive methods for selecting the rank in practice (Section 2.5.4).

Finally, as part of our investigation, we will also develop a detailed understanding of Nyström

sketch-and-solve, a popular algorithm in the machine learning literature [3,13]. Our analysis highlights

the deficiencies of Nyström sketch-and-solve relative to Nyström PCG.

2.1.3 Example: Ridge regression

As a concrete example, we consider the l2-regularized least-squares problem, also known as ridge

regression. This problem takes the form

minimizew∈Rd

1

2n
∥Xw − b∥2 +

µ

2
∥w∥2, (2.6)

where X ∈ Rn×d and b ∈ Rn and µ > 0. By calculus, the solution to Equation (2.6) also satisfies the

regularized system of linear equations

(
XTX + nµI

)
w = XT b. (2.7)

A direct method to solve Equation (2.7) requires O(nd2) flops, which is prohibitive when n and

d are both large. Instead, when n and d are large, iterative algorithms, such as the conjugate

gradient method (CG), become the tools of choice. Unfortunately, the ridge regression linear

system Equation (2.7) is often very ill-conditioned, and CG converges very slowly.

Nyström PCG can dramatically accelerate the solution of Equation (2.7). As an example, consider

the shuttle-rf dataset (Section 2.6.2). The matrix X has dimension 43, 300 × 10, 000, while the

preconditioner is based on a Nyström approximation with rank s = 800. Figure 2.1 shows the

progress of the residual as a function of the iteration count. Nyström PCG converges to machine

precision in 13 iterations, while CG stalls.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 8

0 200 400 600 800 1000
Iteration

10−9

10−6

10−3

100

103

R
es

id
u
al

CG

Nyström PCG

Figure 2.1: Ridge regression: CG versus Nyström PCG. For the shuttle-rf data set, Nyström
PCG converges to machine precision in 13 iterations while CG stalls. See Sections 2.1.3 and 2.6.2.

2.1.4 Comparison to prior randomized preconditioners

Prior proposals for randomized preconditioners [10, 114, 144] accelerate the solution of highly overde-

termined or underdetermined least-squares problems using the sketch-and-precondition paradigm [109,

Sec. 10]. For n ≥ d, these methods require Ω(d3) computation to factor the preconditioner. In

contrast, the randomized Nyström preconditioner applies to any symmetric positive-definite linear

system and can be significantly faster for regularized problems. See Section 2.5.2 more details.

2.1.5 Roadmap

Section 2.2 contains an overview of the Nyström approximation and its key properties. Section 2.3

studies the role of the Nyström approximation in estimating the inverse of the regularized matrix.

We analyze the Nyström sketch-and-solve method in Section 2.4, and we give a rigorous performance

bound for this algorithm. Section 2.5 presents a full treatment of Nyström PCG, including theoretical

results and guidance on numerical implementation. Computational experiments in Section 2.6

demonstrate the power of Nyström PCG for three different applications involving real data sets.

2.1.6 Notation

We write Sn(R) for the linear space of n×n real symmetric matrices, while S+n (R) denotes the convex

cone of real psd matrices. The symbol ⪯ denotes the Loewner order on Sn(R). That is, A ⪯ B if

and only if the eigenvalues of B − A are all nonnegative. The function tr[·] returns the trace of a

square matrix. The map λj(A) returns the jth largest eigenvalue of A; we may omit the matrix if

it is clear. As usual, κ2 denotes the l2 condition number. We write ∥M∥ for the spectral norm of

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 9

a matrix M . For a psd matrix A, we write ∥u∥2A = uTAu for the A-norm. Given A ∈ Sn(R) and

1 ≤ s ≤ n, the symbol ⌊A⌋s refers to any best rank-s approximation to A relative to the spectral

norm. For A ∈ S+n (R) and µ ≥ 0, the regularized matrix is abbreviated Aµ = A+µI. For A ∈ S+n (R)

and µ ≥ 0 the effective dimension of Aµ is defined as dµeff(A) = tr(A(A + µI)†). For A ∈ S+n (R), the

p-stable rank of A is defined as srp(A) = λ−1
p

∑n
j>p λj . For A ∈ S+n (R), we denote the time taken to

compute a matvec with A by Tmv.

2.2 The Nyström approximation

Let us begin with a review of the Nyström approximation and the randomized Nyström approximation.

2.2.1 Definition and basic properties

The Nyström approximation is a natural way to construct a low-rank psd approximation of a psd

matrix A ∈ S+n (R). Let Z ∈ Rn×s be an arbitrary test matrix. The Nyström approximation of A

with respect to the range of X is defined by

A⟨Z⟩ = (AZ)(ZTAZ)†(AZ)T ∈ S+n (R). (2.8)

The Nyström approximation is the best psd approximation of A whose range coincides with the range

of AX. It has a deep relationship with the Schur complement and with Cholesky factorization [109,

Sec. 14].

The Nyström approximation enjoys several elementary properties that we record in the following

lemma.

Lemma 2.2.1. Let A⟨Z⟩ ∈ S+n (R) be a Nyström approximation of the psd matrix A ∈ S+n (R). Then

1. The approximation A⟨Z⟩ is psd and has rank at most s.

2. The approximation A⟨Z⟩ depends only on range(Z), that is

range(A⟨Z⟩) ⊂ range(Z).

3. In the Loewner order, A⟨Z⟩ ⪯ A.

4. In particular, the eigenvalues satisfy λj(A⟨Z⟩) ≤ λj(A) for each 1 ≤ j ≤ n.

The proof of Lemma 2.2.1, Item 3 is not completely obvious. It is a consequence of the fact that

we may express A⟨Z⟩ = A1/2ΠA1/2, where Π is an orthogonal projector.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 10

Algorithm 1 RandNysAppx [102,120,164]

1: Input: Positive-semidefinite matrix A ∈ S+n (R), rank s
2: Ω = randn(n, s) {Gaussian test matrix}
3: Ω = qr(Ω, 0) {Thin QR decomposition}
4: Y = AΩ {s matvecs with A}
5: ν = eps(norm(Y, ’fro’)) {Compute shift}
6: Yν = Y + νΩ {Shift for stability}
7: C = chol(ΩTYν)
8: B = Yν/C
9: [U,Σ,∼] = svd(B, 0) {Thin SVD}

10: Λ̂ = max{0,Σ2 − νI} {Remove shift, compute eigs}
11: Output: Nyström approximation in factored form Ânys = U Λ̂UT

2.2.2 Randomized Nyström approximation

How should we choose the test matrix Z so that the Nyström approximation A⟨Z⟩ provides a

good low-rank model for A? Surprisingly, we can obtain a good approximation simply by drawing

the test matrix at random. See [164] for theoretical justification of this claim.

Let us outline the construction of the randomized Nyström approximation. Draw a standard

normal test matrix Ω ∈ Rn×s where s is the sketch size, and compute the sketch Y = AΩ. By

Lemma 2.2.1, the sketch size s is equal to the rank of Ânys with probability 1, hence we use these

terms interchangeably. The Nyström approximation Equation (2.8) is constructed directly from the

test matrix Ω and the sketch Y :

Ânys = A⟨Ω⟩ = Y (ΩTY)†Y T . (2.9)

The formula Equation (2.9) is not numerically sound. We refer the reader to Algorithm 13 for a stable

and efficient implementation of the randomized Nyström approximation [102,120,164]. Conveniently,

Algorithm 13 returns the truncated eigendecomposition Ânys = U Λ̂UT , where U ∈ Rn×s is an

orthonormal matrix whose columns are eigenvectors and Λ̂ ∈ Rs×s is a diagonal matrix listing the

eigenvalues, which we often abbreviate as λ̂1, . . . , λ̂s.

The randomized Nyström approximation described in this section has a key difference from the

Nyström approximations that have traditionally been used in the machine learning literature [3, 13,

66, 171]. In machine learning settings, the Nyström approximation is usually constructed from a

sketch Y that samples random columns from the matrix (i.e., the random test matrix Ω has 1-sparse

columns). In contrast, Algorithm 13 computes a sketch Y via random projection (i.e., the test matrix

Ω is standard normal). In most applications, we have strong reasons (Section 2.2.2) for preferring

random projections to column sampling.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 11

Cost of randomized Nyström approximation

Throughout the chapter, we write Tmv for the time required to compute a matrix–vector product

(matvec) with A. Forming the sketch Y = AΩ with sketch size s requires s matvecs, which costs

Tmvs. The other steps in the algorithm have arithmetic cost O(ns2). Hence, the total computational

cost of Algorithm 13 is O(Tmvs + s2n) operations. The storage cost is O(sn) floating-point numbers.

For Algorithm 13, the worst-case performance occurs when A is dense and unstructured. In this

case, forming Y costs O(n2s) operations. However, if we have access to the columns of A then we

may reduce the cost of forming Y to O(n2 log s) by using a structured test matrix Ω, such as a

scrambled subsampled randomized Fourier transform (SSRFT) map or a sparse map [109,164].

A priori guarantees for the randomized Nyström approximation

In this section, we present an a priori error bound for the randomized Nyström approximation. The

result improves over previous analyses [66, 67, 164] by sharpening the error terms. This refinement is

critical for the analysis of the preconditioner.

Proposition 2.2.2 (Randomized Nyström approximation: Error). Consider a psd matrix A ∈ S+n (R)

with eigenvalues λ1 ≥ · · · ≥ λn. Choose a sketch size s ≥ 4, and draw a standard normal test matrix

Ω ∈ Rn×s. Then the rank-s Nyström approximation Ânys computed by Algorithm 13 satisfies

E∥A− Ânys∥ ≤ min
2≤p≤s−2

(1 +
2(s− p)

p− 1

)
λs−p+1 +

2e2s

p2 − 1

 ∑
j>s−p

λj

 . (2.10)

The proof of Proposition 2.2.2 may be found in Section 2.8.2.

Proposition 2.2.2 shows that, in expectation, the randomized Nyström approximation Ânys

provides a good rank-s approximation to A. The first term in the bound is comparable with the

spectral-norm error λs−p+1 in the optimal rank-(s−p) approximation, ⌊A⌋s−p. The second term in the

bound is comparable with the trace-norm error
∑

j>s−p λj in the optimal rank-(s− p) approximation.

Proposition 2.2.2 is better understood via the following simplification.

Corollary 2.2.3 (Randomized Nyström approximation). Instate the assumptions of Proposition 2.2.2.

For p ≥ 2 and s = 2p− 1, we have the bound

E∥A− Ânys∥ ≤
(

3 +
4e2

p
srp(A)

)
λp.

The p-stable rank, srp(A) = λ−1
p

∑n
j=p λj, reflects decay in the tail eigenvalues.

Corollary 2.2.3 shows that the Nyström approximation error is on the order of λp when the rank

parameter s = 2p− 1. The constant depends on the p-stable rank srp(A), which is small when the

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 12

tail eigenvalues decay quickly starting at λp. This bound is critical for establishing our main results

(Theorems 2.4.2 and 2.5.1).

Random projection versus column sampling

Most papers in the machine learning literature [3,13] construct Nyström approximations by sampling

columns at random from an adaptive distribution. In contrast, for most applications, we advocate

using an oblivious random projection of the matrix to construct a Nyström approximation.

Random projection has several advantages over column sampling. First, column sampling offers

no computational advantage when we only have black-box matvec access to the matrix, while random

projections are natural in this setting and possess stronger performance guarantees. Second, it

can be very expensive to obtain adaptive distributions for column sampling. Indeed, computing

approximate ridge leverage scores costs just as much as solving the ridge regression problem directly

using random projections [44, Theorem 2]. Third, even with a good sampling distribution, column

sampling produces higher variance results than random projection, so it is far less reliable.

On the other hand, we have found that there are a few applications where it is more effective to

compute a randomized Nyström preconditioner using column sampling in lieu of random projections.

In particular, this seems to be the case for kernel ridge regression (Section 2.6.5). Indeed, the entries

of the kernel matrix are given by an explicit formula, so we can extract full columns with ease.

Sampling s columns may cost only O(sn) operations, whereas a single matvec generally costs O(n2).

Furthermore, kernel matrices usually exhibit fast spectral decay, which limits the performance loss

that results from using column sampling in lieu of random projection.

2.3 Approximating the regularized inverse

Let us return to the regularized linear system Equation (2.1). The solution to the problem has the

form w⋆ = (A+µI)−1b. Given a good approximation Â to the matrix A, it is natural to ask whether

ŵ = (Â + µI)−1b is a good approximation to the desired solution w⋆.

There are many reasons why we might prefer to use Â in place of A. In particular, we may be able

to solve linear systems in the matrix Â + µI more efficiently. On the other hand, the utility of this

approach depends on how well the inverse (Â + µI)−1 approximates the desired inverse (A + µI)−1.

The next result addresses this question for a wide class of approximations that includes the Nyström

approximation.

Proposition 2.3.1 (Regularized inverses). Consider psd matrices A, Â ∈ S+n (R), and assume that

the difference E = A− Â is psd. Fix µ > 0. Then

∥∥∥(Â + µI)−1 − (A + µI)−1
∥∥∥ ≤ 1

µ

∥E∥
∥E∥+ µ

. (2.11)

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 13

Algorithm 2 Nyström sketch-and-solve

1: Input: Psd matrix A ∈ S+n (R), right-hand side b, regularization µ, rank s
2: [U, Λ̂] = RandNysAppx(A, s)
3: Use Equation (2.12) to compute ŵ = (Ânys + µI)−1b
4: Output: Approximate solution ŵ to Equation (2.1)

Furthermore, the bound (2.11) is attained when Â = ⌊A⌋s for 1 ≤ s ≤ n.

The proof of Proposition 2.3.1 may be found in Section 2.8.4. It is based on [18, Lemma X.1.4].

Proposition 2.3.1 has an appealing interpretation. When ∥A− Â∥ is small in comparison to the

regularization parameter µ, then the approximate inverse (Â+µI)−1 can serve in place of the inverse

(A + µI)−1.

2.4 Nyström sketch-and-solve

The simplest mechanism for using the Nyström approximation is an algorithm called Nyström

sketch-and-solve. This section introduces the method, its implementation, and its history. We also

provide a general theoretical analysis that sheds light on its performance. In spite of its popularity,

the Nyström sketch-and-solve method is rarely worth serious consideration.

2.4.1 Overview

Given a rank-s Nyström approximation Ânys of the psd matrix A, it is tempting to replace the

regularized linear system (A + µI)w = b with the proxy (Ânys + µI)w = b. Indeed, we can solve

the proxy linear system in O(sn) time using the Sherman–Morrison–Woodbury formula [68, Eqn.

(2.1.4)]:

Lemma 2.4.1 (Approximate regularized inversion). Consider any rank-s matrix Â with eigenvalue

decomposition Â = U Λ̂UT . Then

(Â + µI)−1 = U(Λ̂ + µI)−1UT +
1

µ
(I − UUT). (2.12)

We refer to the approach in this paragraph as the Nyström sketch-and-solve algorithm because it is

modeled on the sketch-and-solve paradigm that originated in [149].

See Algorithm 2 for a summary of the Nyström sketch-and-solve method. The algorithm produces

an approximate solution ŵ to the regularized linear system Equation (2.1) in time O(Tmvs + s2n).

The arithmetic cost is much faster than a direct method, which costs O(n3). It can also be faster

than running CG for a long time at a cost of O(Tmv) per iteration. The method looks attractive if

we only consider the runtime, and yet...

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 14

Nyström sketch-and-solve only has one parameter, the rank s of the Nyström approximation,

which controls the quality of the approximate solution ŵ. When s≪ n, the method has an appealing

computational profile. As s increases, the approximation quality increases but the computational

burden becomes heavy. We will show that, alas, an accurate solution to the linear system actually

requires s ≈ n, at which point the computational benefits of Nyström sketch-and-solve evaporate

completely.

In summary, Nyström sketch-and-solve is almost never the right algorithm to use. We will see

that Nyström PCG generally produces much more accurate solutions with a similar computational

cost.

2.4.2 Guarantees and deficiencies

Using Proposition 2.3.1 together with the a priori guarantee in Proposition 2.2.2, we quickly obtain a

performance guarantee for Algorithm 2.

Theorem 2.4.2. Fix p ≥ 2, and set s = 2p−1. For a psd matrix A ∈ S+n (R), construct a randomized

Nyström approximation Ânys using Algorithm 13. Then the approximation error for the inverse

satisfies

E
∥∥(A + µI)−1 − (Ânys + µI)−1

∥∥ ≤ (3 +
4e2

p
srp(A)

)
λp

µ · (λp + µ)
. (2.13)

Define w⋆ = (A + µI)−1b, and select s = 2 ⌈1.5 dϵµeff(A)⌉ + 1. Then the approximate solution ŵ

computed by Algorithm 2 satisfies

E
[∥ŵ − w⋆∥2
∥w⋆∥2

]
≤ 26ϵ. (2.14)

The proof of Theorem 2.4.2 may be found in Section 2.8.5.

Theorem 2.4.2 tells us how accurately we can hope to solve linear systems using Nyström sketch-

and-solve (Algorithm 2). A sketch size s = O(dϵµeff(A)) is needed to guarantee relative error ϵ.

When ϵµ is small, we anticipate that dϵµeff(A) ≈ n. In this setting, Nyström sketch-and-solve has no

computational value: it is as expensive as a direct method. As a concrete example, let µ = 10−4

and suppose we want six digits of accuracy, i.e., ϵ = 10−6. Then we must hope to find a sketch

size s so that λs ∼ 10−10 to achieve the required accuracy; and s ≪ n so the method offers a

computational advantage. It is rare to find a matrix whose spectrum decays rapidly enough to satisfy

both these constraints! Our analysis is sharp in its essential respects, so the pessimistic assessment is

irremediable.

2.4.3 History

Nyström sketch-and-solve has a long history in the machine learning literature. It was introduced

in [171] to speed up kernel-based learning, and it plays a role in many subsequent papers on

kernel methods. In this context, the Nyström approximation is typically obtained using column

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 15

sampling [3,13,171], which has its limitations (Section 2.2.2). More recently, Nyström sketch-and-solve

has been applied to speed up approximate cross-validation [158].

The analysis of Nyström sketch-and-solve presented above differs from previous analysis. Prior

works [3, 13] focus on the kernel setting, and they use properties of column sampling schemes to

derive learning guarantees. In contrast, we bound the relative error for a Nyström approximation

based on a random projection. Our overall approach extends to column sampling if we replace

Proposition 2.2.2 by an appropriate analog, such as Gittens’s results [66].

2.5 Nyström Preconditioned Conjugate Gradients

We now present our main algorithm, Nyström PCG. This algorithm produces high accuracy solutions

to a regularized linear system by using the Nyström approximation Ânys as a preconditioner. We

provide a rigorous estimate for the condition number of the preconditioned system, and we prove

that Nyström PCG leads to fast convergence for regularized linear systems. In contrast, we have

shown that Nyström sketch-and-solve cannot be expected to yield accurate solutions.

2.5.1 The preconditioner

In this section, we introduce the optimal low-rank preconditioner, and we argue that the randomized

Nyström preconditioner provides an approximation that is easy to compute.

Motivation

As a warmup, suppose we knew the eigenvalue decomposition of the best rank-s approximation of

the matrix: ⌊A⌋s = VsΛsV
T
s . How should we use this information to construct a good preconditioner

for the regularized linear system Equation (2.1)?

Consider the family of symmetric psd matrices that act as the identity on the orthogonal

complement of range(Vs). Within this class, we claim that the following matrix is the optimal

preconditioner :

P⋆ =
1

λs+1 + µ
Vs(Λs + µI)V T

s + (I − VsV
T
s). (2.15)

The optimal preconditioner P⋆ requires O(ns) storage, and we can solve linear systems in P⋆ in

O(ns) time. Whereas the regularized matrix Aµ has condition number κ2(Aµ) = (λ1 + µ)/(λn + µ),

the preconditioner yields

κ2(P
−1/2
⋆ AµP

−1/2
⋆) =

λs+1 + µ

λn + µ
. (2.16)

This is the minimum possible condition number attainable by a preconditioner from the class that

we have delineated. It represents a significant improvement when λs+1 ≪ λ1. The proofs of these

claims are straightforward; for details, see Section 2.8.6.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 16

Randomized Nyström preconditioner

It is expensive to compute the best rank-s approximation ⌊A⌋s accurately. In contrast, we can compute

the rank-s randomized Nyström approximation Ânys efficiently (Algorithm 13). Furthermore, we have

seen that Ânys approximates A nearly as well as the optimal rank-s approximation (Corollary 2.2.3).

These facts lead us to study the randomized Nyström preconditioner, proposed in [109, Sec. 17]

without a complete justification.

Consider the eigenvalue decomposition Ânys = U Λ̂UT , and write λ̂s for its sth eigenvalue. The

randomized Nyström preconditioner and its inverse take the form

P =
1

λ̂s + µ
U(Λ̂ + µI)UT + (I − UUT);

P−1 = (λ̂s + µ)U(Λ̂ + µI)−1UT + (I − UUT).

(2.17)

Like the optimal preconditioner P⋆, the randomized Nyström preconditioner (2.17) is cheap to apply

and to store. We may hope that it damps the condition number of the preconditioned system

P−1/2AµP
−1/2 nearly as well as the optimal preconditioner P⋆. We will support this intuition with

a rigorous bound (Proposition 2.5.3).

2.5.2 Nyström PCG

We can obviously use the randomized Nyström preconditioner within the framework of PCG. We

call this approach Nyström PCG, and we present a basic implementation in Algorithm 3. In the

case of very ill-conditioned least-squares problems, it is sometimes preferable to use other Krylov

methods such as LSQR [128] over CG. We have not found the need to use such methods as we focus

on regularized problems and are preconditioning, so that κ2(P−1/2AµP
−1/2) ≪ u−1, where u is

machine precision, Nevertheless, the Nyström precondtioner is easily extended to LSQR, one may

use P−1/2 as a right-preconditioner with P as in (2.17).

More precisely, Algorithm 3 uses left-preconditioned CG. This algorithm implicitly works with the

unsymmetric matrix P−1Aµ, rather than the symmetric matrix P−1/2AµP
−1/2. The two variants of

PCG yield identical sequences of iterates [148], but the former is more efficient. For ease of analysis,

our theoretical results are presented in terms of the symmetrically preconditioned matrix.

Complexity of Nyström PCG

Nyström PCG first constructs the randomized Nyström approximation, and then solves the regu-

larized linear system with PCG. We have already discussed the cost of constructing the Nyström

approximation (Section 2.2.2). PCG requires O(Tmv) operations per iteration, and it uses a total of

O(n) additional storage.

For the regularized linear system Equation (2.1), Theorem 2.5.1 and Corollary 2.5.2 demonstrate

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 17

Algorithm 3 Nyström PCG

1: Input: Psd matrix A, righthand side b, initial guess x0, regularization parameter µ, sketch size
s, solution tolerance η

2: [U, Λ̂] = RandNysAppx(A, s)
3: r0 = b− (A + µI)x0

4: z0 = P−1r0 {using (2.17)}
5: p0 = z0
6: while ∥r∥2 > η do
7: v = (A + µI)p0
8: α = (rT0 z0)/(pT0 v0) {compute step size}
9: x = x0 + αp0 {update solution}

10: r = r0 − αv {update residual}
11: z = P−1r {find search direction via (2.17)}
12: β = (rT z)/(rT0 z0)
13: x0 ← x, r0 ← r, p0 ← z + βp0, z0 ← z
14: end while
15: Output: Approximate solution x̂ to regularized system Equation (2.1)

that it suffices to choose the sketch size s = 2 ⌈1.5dµeff(A)⌉+ 1. In this case with high probability, the

overall runtime needed for Nyström PCG to obtain ϵ-relative error in the Aµ-norm is

O
(
dµeff(A)2n + Tmv(dµeff(A) + log(1/ϵ))

)
operations.

When the effective dimension dµeff(A) is modest, Nyström PCG is very efficient.

In contrast, Section 2.4.2 shows that the running time for Nyström sketch-and-solve has the

same form— with dϵµeff(A) in place of dµeff(A). That is, Nyström PCG can produce solutions whose

residual norm is close to machine precision, whereas it is impossible to obtain high precision solutions

efficiently with Nyström sketch-and-solve.

When is Nyström PCG faster than Conjugate Gradient?

The preceding discussion shows that when the preconditioner is constructed appropriately, Nyström

PCG converges at a linear rate, independent of the condition number of Aµ. It is therefore tempting

to conclude that when dµeff(A) is modest, Nyström PCG is faster than CG, whose asymptotic cost is

O
(
Tmv

√
κ log

(
1

ϵ

))
.

However, for problems where dµeff(A) is modest, the classic analysis of CG is not sharp. Instead, a

tight analysis from [11], see also [73, Eq. 3.11] [169, Corollary 16], combined with Lemma 2.5.4 shows

the cost of CG is at most

O
(
Tmvd

µ
eff(A) + log

(
1

ϵ

))
.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 18

In detail, CG runs for dµeff(A) iterations, during which it eliminates the eigenvalues larger than µ.

Once these large outlying eigenvalues have been eliminated, the remaining eigenvalues are highly

clustered, so CG converges at a fast linear rate independent of the condition number.

Thus, when using a Gaussian test matrix to construct the preconditioner, Nyström PCG is

not asymptotically faster than CG. Nevertheless, it is often faster in practice, owing to how the

computation is organized. The computation of the sketch AΩ is performed as a matrix-matrix

product or in batch, which exploits the massive parallelism of modern computing architectures. In

contrast, CG cannot batch its matvecs, as it is inherently sequential—it computes one matvec per

iteration. Consequently, even though both algorithms use the same number of matvecs asymptotically,

Nyström PCG can be significantly faster in practice. The situation is similar to the LSRN solver [114]

for highly overdetermined and underdetermined least-squares problems. When the data matrix is

highly overdetermined, [114] uses a Gaussian sketch with a sketch size proportional to the number of

columns—even though in exact arithmetic CG produces the exact solution when it is run for this

many iterations. Thus, LSRN does not improve over CG asymptotically in the number of matvecs,

but it is faster in practice thanks to parallelism and how it organizes the computation.

Figure 2.2 gives an example of the power of parallelism with the covtype dataset from LIBSVM [29].

A random features transform is performed, leading to a design matrix X of size (581012, 5000). The

ridge regression problem with regularization nµ = 1 is then solved via CG and Nyström PCG with

a rank r = 500 preconditioner. Note that to compute the Nyström preconditioner, Nyström PCG

performs 1000 matvecs. To reach the required tolerance, Nyström PCG incurs an additional 80

matvecs for 80 iterations in PCG, for a total matvec expenditure of 1080. In contrast, to solve this

problem, CG expends 1760 matvecs. Thus, the number of matvecs used is comparable in terms of

orders of magnitude. Despite this, Figure 2.2 shows that Nyström PCG runs 20× faster than CG on

this example, which demonstrates the power of parallelism.

Finally, it is worth noting that there are settings where Nyström PCG exhibits better asymptotic

performance than the sharp analysis of CG from [11]. When we have entrywise access to A, the cost

of the sketch can be reduced to O(n2 log (dµeff(A))) by using a structured sketching map [40]. This

implies a total cost of O
(
n2 log

(
dµ
eff(A)

ϵ

)
+ ndµeff(A)2

)
, which offers a significant improvement over

the refined analysis of CG when dµeff(A) = O(
√
n).

Comparison to other randomized preconditioning methods

Here we discuss Nyström PCG in the context of prior work on randomized preconditioning [10,

69,96,114,144] based on sketch-and-precondition and related ideas. All these prior methods were

developed for least squares problems. We summarize the complexity of each method for regularized

least-squares problems in Table 3.1.

The time to construct the sketch-and-precondition preconditioner is always larger than that of

the Nyström preconditioner, since dµeff < d and γ < 1. Indeed, constructing the preconditioner for

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 19

0 10 20 30 40 50 60

Time (s)

10−9

10−7

10−5

10−3

10−1

R
el

at
iv

e
A
µ
-n

or
m

er
ro

r

CG

Nyström PCG

Figure 2.2: Comparable matvecs does not mean comparable runtime. On the ridge regression
with the covtype random features problem, Nyström PCG uses 1080 matvecs in total to solve the
problem, while CG uses 1760 matvecs. Despite the number of matvecs performed by both algorithms
being on the same order of magnitude, Nyström PCG is about 20× faster than CG, as the 1000
matvecs used to construct the preconditioner are parallelized.

sketch-and-precondition costs Ω(d3), which is the same as a direct method when d = Ω(n) and is

prohibitive for high-dimensional problems. In contrast, Nyström PCG is amenable to problems with

large d and runs much faster than sketch-and-precondition whenever dµeff ≪ d. We note the analysis

of sketch-and-precondition can likely be improved to require only a sketch size of O(dµeff/γ). However,

this improvement by itself is only of theoretical value as dµeff is almost never known beforehand. Thus,

without an adaptive scheme or method to estimate dµeff, the best a priori sketch size one can select

with sketch-and-precondition methods is O(d/γ). The Nyström preconditioner also enjoys wider

applicability then sketch-precondition: it applies to square-ish systems, whereas the others only work

for strongly overdetermined or underdetermined problems. Nyström PCG also improves slightly

on the complexity of AdaIHS: while both scale linearly in d, Nyström PCG removes unnecessary

logarithmic factors and the constant ρ < 0.18.

Of the methods presented in Table 3.1, sketched preconditioned SVRG [69] is closest to our

approach. The authors of [69] construct a preconditioner from a randomized low-rank approximation

to be deployed with the SVRG algorithm [86]. However, while both use a randomized low-rank

approximation to construct the preconditioner, the methods differ significantly. In particular, [69]

constructs the randomized preconditioner using the randomized block Krylov scheme in [119], which is

significantly more expensive than Algorithm 13 used for Nyström PCG. Indeed, the randomized block

Krylov scheme requires s-matvecs with A O(log(n)) times and O(log(n)) costly orthogonalizations,

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 20

Table 2.1: Regularized least-squares: Complexity of prior randomized preconditoning
methods vs. Nyström PCG. The table compares the complexity of Nyström PCG and state-of-
the-art randomized preconditioning methods in the overdetermined case n ≥ d, assuming we can
access A only via matrix-vector products. The sketch-and-precondition preconditioner is constructed
from a sketch SA, where S ∈ Rs×n is a (1 ± γ) Gaussian subspace embedding with sketch size
s = Ω(d/γ) and γ ∈ (0, 1). The time to compute the sketch is O(Tmvd/γ) and the iteration complexity
follows from the argument in [173, Sec 2.6]. For AdaIHS, we use a sketch constructed from a
Gaussian subspace embedding with sketch size O(dµeff/ρ) where ρ ∈ (0, 0.18). The complexity of
AdaIHS follows from [96, Theorem 5]. Similarly, the construction in [69] uses a Gaussian test

matrix. Let κ̃s =
(
sλs +

∑
j>s λj

)
/µ. Then the overall runtime of sketched-preconditioned SVRG

follows from [69, Theorem 1] and the runtime of randomized block Krylov method used to construct
the preconditioner [109, 119]. The complexity of Nyström PCG is derived from Theorem 2.5.1
and Corollary 2.5.2.

Method Complexity References

Sketch-and-precondition O
(
Tmvd/γ + d3/γ + Tmv

log(1/ϵ)
log(1/γ)

)
[10, 114,144]

AdaIHS O
(
(Tmvd

µ
eff/ρ+ d(dµeff)

2/ρ2) log(dµeff/ρ) + Tmv
log(1/ϵ)
log(1/ρ)

)
[96]

Sketched preconditioned
SVRG

O
(
Tmvs log(n) + ds2 log2(n)

)
+O

(
Tmv + κ̃s + d2) log(1/ϵ)

) [69]

Nyström PCG O
(
Tmvd

µ
eff + d(dµeff)

2 + Tmv log(1/ϵ)
)

This work

which are needed for numerical stability [109]. Hence sketched preconditioned SVRG is considerably

slower than Nyström PCG, see Table 3.1. Moreover, the theory in [69] also lacks any connection

with the effective dimension and provides no theoretical or practical guidance for selecting the rank

s. Last, note SVRG (unlike PCG) is typically used in settings where a full pass through the data, i.e.

a matvec, is too expensive. A preconditioner that requires multiple full passes through the data is an

odd choice in this setting.

In the context of kernel ridge regression (KRR), the random features method of [9] may be viewed

as a randomized preconditioning technique. [9] prove convergence guarantees for the polynomial

kernel with a (large) sketch size s = O
(
(dµeff)2

)
. In contrast, Nyström PCG can be used for KRR

with any kernel and requires only the smaller sketch size s = O(dµeff) to obtain fast convergence.

Finally, in a pure statistical learning setting, where the primary concern is test-set error and

not residual tolerance, fast approximate methods for KRR are also available. The current state of

the art is the Falkon algorithm from [147], which shares important commonalities with Nyström-

sketch-and-solve. Instead of working with full kernel, it works with Kns ∈ Rn×s, where Kns is

computed with respect to s-centers randomly sampled from the training set. Let Dµ
eff denote the

effective dimension of the kernel covariance operator. Then under appropriate conditions and with

s = O (Dµ
eff), [147] shows Falkon obtains generalization error comparable to that of exact methods,

with runtime O(nDµ
eff log(n) + (Dµ

eff)3). Moreover, it can be shown under the same hypotheses that

Dµ
eff = O (dµeff). Thus, in principle, Falkon should run much faster than Nyström PCG or random

features PCG from [9], and yield nearly identical statistical performance on the test set. We have

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 21

found Falkon does run faster, but there are gaps in performance relative to Nyström PCG that cannot

be improved by increasing the number of centers. That is, to obtain the best statistical performance,

there is still a benefit to solving the problem to modest accuracy. See Section 2.6.5 for numerical

comparison and further discussion. Furthermore, Falkon only applies to vanilla KRR and kernelized

logistic regression [110], and not to Gaussian processes, an application where Nyström PCG might

prove useful. Moreover, the Gaussian processes literature [61,170] has found exact inference yields

better learning performance than approximate methods.

In summary, Nyström PCG applies to a wider class of problems than prior randomized precon-

ditioners and enjoys stronger theoretical guarantees for regularized problems. Nyström PCG also

outperforms other randomized preconditioners numerically (Section 2.6).

Block Nyström PCG

The Nyström preconditioner can also precondition the block CG algorithm [126] to solve regularized

linear systems with multiple right-hand sides, as appear in applications to approximate cross

validation [158], influence functions [92], and hyperparameter optimization [107]. Blocking provides

advantages both in convergence rate and in memory management. The orthogonalization preprocessing

proposed in [53] ensures numerical stability for Block Nyström PCG without further orthogonalization

steps during the iteration.

2.5.3 Analysis of Nyström PCG

We now turn to the analysis of the randomized Nyström preconditioner P . Theorem 2.5.1 provides a

bound for the rank s of the Nyström preconditioner that reduces the condition number of Aµ to a

constant. In this case, we deduce that Nyström PCG converges rapidly (Corollary 2.5.2).

Theorem 2.5.1 (Nyström preconditioning). Suppose we construct the Nyström preconditioner P in

Equation (2.17) using Algorithm 13 with sketch size s = 2 ⌈1.5 dµeff(A)⌉+ 1. Using P to precondition

the regularized matrix Aµ results in the condition number bound

E
[
κ2(P−1/2AµP

−1/2)
]
< 28.

The proof of Theorem 2.5.1 may be found in Section 2.5.3.

Theorem 2.5.1 has several appealing features. Many other authors have noticed that the effective

dimension controls sample size requirements for particular applications such as discriminant analysis

[33], ridge regression [96], and kernel ridge regression [3, 13]. In contrast, our result holds for any

regularized linear system.

Our argument makes the role of the effective dimension conceptually simpler, and it leads to

explicit, practical parameter recommendations. Indeed, the effective dimension dµeff(A)) is essentially

the same as the sketch size s that makes the approximation error ∥A− Ânys∥ proportional to µ. In

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 22

previous arguments, such as those in [3,13,33], the effective dimension arises because the authors

reduce the analysis to approximate matrix multiplication [36], which produces inscrutable constant

factors.

We also note Theorem 2.5.1 easily extends to the column sampling schemes using Proposition 2.5.3

and results from [3] to control ∥E∥. This is particularly attractive for kernel problems, as the Nyström

preconditioner maybe constructed in O(ns2) operations. For the case of uniform column sampling,

the key quantity is the maximal marginal degrees of freedom

dµmof(A) = n∥diag(A(A + nµI)−1)∥∞.

Clearly, dµmof(A) ≥ dµeff(A), and is generally significantly larger. Combining our results with those

from [3], we can conclude a similar result to Theorem 2.5.1 using a rank of size s = O (dµmof(A) log(n)).

Thus the guarantees for uniform column sampling are considerably worse than those of random

projection. In practice we have found the bound on s for uniform column sampling to be very

pessimistic, see Section 2.6.5 for corroborating numerical evidence.

Theorem 2.5.1 ensures that Nyström PCG converges quickly.

Corollary 2.5.2 (Nyström PCG: Convergence). Define P as in Theorem 2.5.1, and condition on

the event
{
κ2

(
P−1/2AµP

−1/2
)
≤ 56

}
. If we initialize Algorithm 3 with initial iterate w0 = 0, then

the relative error δt in the iterate xt satisfies

δt =
∥wt − w⋆∥Aµ

∥w⋆∥Aµ

< 2 · (0.77)
t

where Aµw⋆ = b.

In particular, after t = ⌈3.8 log(2/ϵ)⌉ iterations, we have relative error δt < ϵ.

The proof of Corollary 2.5.2 is an immediate consequence of the standard convergence result for

CG [161, Theorem 38.5, p. 299]. See Section 2.8.7. Note Corollary 2.5.2 also immediately implies the

total number of matvecs required to reach an ϵ-accurate solution in the A-norm.

Analyzing the condition number

The first step in the proof of Theorem 2.5.1 is a deterministic bound on how the preconditioner (2.17)

reduces the condition number of the regularized matrix Aµ. Let us emphasize that this bound is

valid for any rank-s Nyström approximation, regardless of the choice of test matrix.

Proposition 2.5.3 (Nyström preconditioner: deterministic bound). Let Â = U Λ̂UT be any rank-s

Nyström approximation, with sth largest eigenvalue λ̂s, and let E = A − Â be the approximation

error. Construct the Nyström preconditioner P as in (2.17). Then the condition number of the

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 23

preconditioned matrix P−1/2AµP
−1/2 satisfies

max

{
λ̂s + µ

λn + µ
, 1

}
≤ κ2(P−1/2AµP

−1/2)

≤
(
λ̂s + µ + ∥E∥

)
min

{
1

µ
,

λ̂s + λn + 2µ

(λ̂s + µ)(λn + µ)

}
.

(2.18)

For the proof of Proposition 2.5.3 see Section 2.8.6. It turns out the only properties of the

Nyström approximation we require in Proposition 2.5.3 is that Â is psd and E = A− Â ⪰ 0. Thus,

Proposition 2.5.3 also applies to any preconditioner of the form (2.17) constructed from a matrix Â

that possesses these two properties.

To interpret the result, recall the expression Equation (2.16) for the condition number induced by

the optimal preconditioner. Proposition 2.5.3 shows that the Nyström preconditioner may reduce the

condition number almost as well as the optimal preconditioner. Equation (2.18) shows the price we

pay for using an efficiently computable preconditioner, is the condition number of the preconditioned

system depends upon our approximation error ∥E∥. This is natural given the preconditioner is

constructed from Â, a perturbed version of A. Hence we expect P to behave like a perturbed version

of P⋆, which is precisely the content of Proposition 2.5.3.

In particular, when ∥E∥ = O(µ), the condition number of the preconditioned system is bounded

by a constant, independent of the spectrum of A. This follows as λ̂s ≤ λs and ∥E∥ dominates λs. In

this setting, Nyström PCG is guaranteed to converge quickly.

The effective dimension and sketch size selection

How should we choose the sketch size s to guarantee that ∥E∥ = O(µ)? Corollary 2.2.3 shows how

the error in the rank-s randomized Nyström approximation depends on the spectrum of A through

the eigenvalues of A and the tail stable rank. In this section, we present a lemma which demonstrates

that the effective dimension dµeff(A) controls both quantities. As a consequence of this bound, we will

be able to choose the sketch size s proportional to the effective dimension dµeff(A).

Recall from Equation (2.4) that the effective dimension of the matrix A is defined as

dµeff(A) = tr(A(A + µI)+) =

n∑
j=1

λj(A)

λj(A) + µ
. (2.19)

As previously mentioned, dµeff(A) may be viewed as a smoothed count of the eigenvalues larger than

µ. Thus, one may expect that λk(A) ≲ µ for k ≳ dµeff(A). This intuition is correct, and it forms the

content of Lemma 2.5.4.

Lemma 2.5.4 (Effective dimension). Let A ∈ S+n (R) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let

µ > 0 be regularization parameter, and define the effective dimension as in Equation (2.19). The

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 24

following statements hold.

1. Fix γ > 0. If j ≥ (1 + γ−1)dµeff(A), then λj ≤ γµ.

2. If k ≥ dµeff(A), then k−1
∑

j>k λj ≤ (dµeff(A)/k) · µ.

The proof of Lemma 2.5.4 may be found in Section 2.8.6.

Lemma 2.5.4, Item 1 captures the intuitive fact that there are no more than 2dµeff(A) eigenvalues

larger than µ. Similarly, Item 2 states that the effective dimension controls the sum of all the

eigenvalues whose index exceeds the effective dimension. It is instructive to think about the meaning

of these results when dµeff(A) is small.

Proof of Theorem 2.5.1

We are now prepared to prove Theorem 2.5.1. The key ingredients in the proof are Proposition 2.2.2,

Proposition 2.5.3, and Lemma 2.5.4.

Proof of Theorem 2.5.1. Fix the sketch size s = 2 ⌈1.5 dµeff(A)⌉+ 1. Construct the rank-s randomized

Nyström approximation Ânys with eigenvalues λ̂j . Write E = A− Ânys for the approximation error.

Form the preconditioner P via Equation (2.17). We must bound the expected condition number of

the preconditioned matrix P−1/2AµP
−1/2

First, we apply Proposition 2.5.3 to obtain a deterministic bound that is valid for any rank-s

Nyström preconditioner:

κ2(P−1/2AµP
−1/2) ≤ λ̂s + µ + ∥E∥

µ
≤ 2 +

∥E∥
µ

.

The second inequality holds because λ̂s ≤ λs ≤ µ. This is a consequence of Lemma 2.2.1, Item 4 and

Lemma 2.5.4, Item 1 with γ = 1. We rely on the fact that s ≥ 2 dµeff(A).

Decompose s = 2p−1 where p = ⌈1.5 dµeff(A)⌉+1. Take the expectation, and invoke Corollary 2.2.3

to obtain

E
[
κ2(P−1/2AµP

−1/2)
]
≤ 2 +

(
3 +

4e2

p
srp(A)

)
(λp/µ).

By definition, srp(A) · λp =
∑

j≥p λj . To complete the bound, apply Lemma 2.5.4 twice. We use

Item 1 with γ = 2 and Item 2 with k = p− 1 = ⌈1.5 dµeff(A)⌉ to reach

E
[
κ2(P−1/2AµP

−1/2)
]
≤ 2 +

3 · 2µ + 4e2 · 2µ/3

µ
< 2 + 26 = 28,

which is the desired result.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 25

2.5.4 Practical parameter selection

In practice, we may not know the regularization parameter µ in advance, and we rarely know the

effective dimension dµeff(A). As a consequence, we cannot enact the theoretical recommendation for

the rank of the Nyström preconditioner: s = 2 ⌈1.5 dµeff(A)⌉+ 1. Instead, we need an adaptive method

for choosing the rank s. Below, we outline three strategies.

Strategy 1: Adaptive rank selection by a posteriori error estimation

The first strategy uses the posterior condition number estimate adaptively in a procedure the

repeatedly doubles the sketch size s as required. Recall that Proposition 2.5.3 controls the condition

number of the preconditioned system:

κ2(P−1/2AµP
−1/2) ≤ λ̂s + µ + ∥E∥

µ
where E = A− Ânys. (2.20)

We get λ̂s for free from Algorithm 13 and we can compute the error ∥E∥ inexpensively with the

randomized power method [95]; see Algorithm 4 in Section 2.10.1. Thus, we can ensure the condition

number is small by making ∥E∥ and λ̂s fall below some desired tolerance. The adaptive strategy

proceeds to do this as follows. We compute a randomized Nyström approximation with initial

sketch size s0, and we estimate the error ∥E∥ using randomized powering. If ∥E∥ is smaller than

a prescribed tolerance, we accept the rank-s0 approximation. If the tolerance is not met, then we

double the sketch size, update the approximation, and estimate ∥E∥ again. The process repeats

until the estimate for ∥E∥ falls below the tolerance or it breaches a threshold smax for the maximum

sketch size. Algorithm 5 uses the following stopping criterions ∥E∥ ≤ TolErr and λ̂s ≤ TolRat for

tolerances TolErr and TolRat. The stopping criterion on λ̂s does not seem to be necessary in practice,

as it is usually an order of magnitude small than ∥E∥, but it is needed for Theorem 2.5.5. Based on

numerical experience, we recommend the choices TolErr = τµ,TolRat = τµ/10 for τ ∈ [1, 100]. For

full algorithmic details of adaptive rank selection by estimating ∥E∥, see Algorithm 5 in Section 2.10.

The following theorem shows that with high probability, Algorithm 5 terminates with a modest

sketch size in at most a logarithmic number of steps, and PCG with the resulting preconditioner

converges rapidly.

Theorem 2.5.5. Run Algorithm 5 with initial sketch size s0, tolerances TolErr = τµ,TolRat = τµ/11

where τ ≥ 1, and let s̃ = 2⌈2dδτµ/11eff (A)⌉+ 1. Then with probability at least 1− δ:

1. Algorithm 5 doubles the sketch size at most ⌈log2

(
s̃
s0

)
⌉ times.

2. The final sketch size s satisfies

s ≤ 4⌈2dδτµ/11eff (A)⌉+ 2.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 26

3. With the preconditioner constructed from Algorithm 5, Nyström PCG converges in at most

⌈ log(2/ϵ)
log(1/τ0)

⌉ iterations, where τ0 =

√
1+12τ/11−1√
1+12τ/11+1

.

Theorem 2.5.5 immediately implies the following concrete guarantee.

Corollary 2.5.6. Set τ = 44 and δ = 1/4 in Algorithm 5 then with probability at least 3/4:

1. Algorithm 5 doubles the sketch size at most ⌈log2

(
s̃
s0

)
⌉ times.

2. The final sketch size s satisfies

s ≤ 4⌈2dµeff(A)⌉+ 2.

3. With the preconditioner constructed from Algorithm 5, Nyström PCG converges in at most

⌈3.48 log(2/ϵ)⌉ iterations.

Strategy 2: Adaptive rank selection by monitoring λ̂s/µ

The second strategy is almost identical to the first, except we monitor the ratio λ̂s/µ instead of

∥E∥/µ. Strategy 2 doubles the approximation rank until λ̂s/µ falls below some tolerance (say, 10) or

the sample size reaches the threshold smax. The approach is justified by the following proposition

which shows that once the rank s is sufficiently large, with high probability, the exact condition

number differs from the empirical condition number (λ̂s + µ)/µ by at most a constant.

Proposition 2.5.7. Let τ ≥ 0 denote the tolerance and δ > 0 a given failure probability. Suppose

the rank of the randomized Nyström approximation satisfies s ≥ 2⌈2dτµeff (A))⌉+ 1. Then

P

{(
κ2(P−1/2AµP

−1/2)− λ̂s + µ

µ

)
+

≤ τ

δ

}
≥ 1− δ, (2.21)

where (·)+ = max{·, 0}.

This strategy has the benefit of saving a bit of computation and is preferable when a moderately

small residual is sufficient, eg, in machine learning problems where training error only loosely predicts

test error.

Strategy 3: Choose s as large as the user can afford

The third strategy is to choose the rank s as large as the user can afford. This approach is coarse,

and it does not yield any guarantees on the cost of the Nyström PCG method.

Nevertheless, once we have constructed a rank-s Nyström approximation we can combine the

posterior estimate of the condition number used in strategy 1 with the standard convergence theory

of PCG to obtain an upper bound for the iteration count of Nyström PCG. This gives us advance

warning about how long it may take to solve the regularized linear system. As in strategy 1 we

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 27

compute the error ∥E∥ in the condition number bound inexpensively with the randomized power

method.

2.6 Applications and experiments

In this section, we study the performance of Nyström PCG on real world data from three different

applications: ridge regression, kernel ridge regression, and approximate cross-validation. The

experiments demonstrate the effectiveness of the preconditioner and our strategies for choosing the

rank s compared to other algorithms in the literature: on large datasets, we find that our method

outperforms competitors by a factor of 5–10 (Table 2.3 and Table 2.8).

2.6.1 Preliminaries

We implemented all experiments in MATLAB R2019a and MATLAB R2021a on a server with 128

Intel Xeon E7-4850 v4 2.10GHz CPU cores and 1056 GB. Except for the very large scale datasets

(n ≥ 105), every numerical experiment in this section was repeated twenty times; tables report the

mean over the twenty runs, and the standard deviation (in parentheses) when it is non-zero. We

highlight the best-performing method in a table in bold.

We select hyperparameters of competing methods by grid search to optimize performance. This

procedure tends to be very charitable to the competitors, and it may not be representative of their

real-world performance. Indeed, grid search is computationally expensive, and it cannot be used

as part of a practical implementation. A detailed overview of the experimental setup for each

application may be found in the appropriate section of Section 2.11, and additional numerical results

in Section 2.12.

2.6.2 Ridge regression

In this section, we solve the ridge regression problem (2.7) described in Section 2.1.3 on some standard

machine learning data sets (Table 2.2) from OpenML [168] and LIBSVM [29]. The effective dimension

dµeff and the numerical rank of these matrices provide insight into the difficulty of each problem.

These are reported in Table 2.2. We compare Nyström PCG to standard CG and two randomized

preconditioning methods, the sketch-and-precondition method of Rokhlin and Tygert (R&T) [144]

and the Adaptive Iterative Hessian Sketch (AdaIHS) [96].

Experimental overview

We perform two sets of experiments: computing regularization paths on CIFAR-10 and Guillermo,

and random features regression [136,138] on shuttle, smallNORB, Higgs, YearMSD, and covtype with

specified values of µ. The values of µ may be found in Section 2.11.1. We use the Euclidean norm

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 28

Table 2.2: Ridge regression: Dataset statistics. The table reports the effective dimension and
numerical rank (in double precision) of each dataset. For CIFAR-10 and Guillermo, we report dµeff
using the value of µ on the regularization path that yields the best test error. The numerical rank
(NumRank) of a matrix A ∈ Rn×n with eigenvalues λ1 ≥ · · · ≥ λk is max{k : λk ≥ λ1ϵ}, the number
of eigenvalues larger than machine precision ϵ scaled by the spectral norm of A.

Dataset n d d
µ
eff NumRank

CIFAR-10 40,000 3,072 1,258 3,072
Guillermo 16,000 4,297 1,885 2,000

smallNorb-rf 24,300 10,000 1,806 6,812
shuttle-rf 43,300 10,000 439 853
Higgs-rf 800,000 10,000 936 10,000

YearMSD-rf 463,715 15,000 7,262 15,000
covtype-binary 464,810 15,000 14,629 15,000

∥r∥2 of the residual as our stopping criteria and declare convergence when ∥r∥2 ≤ 10−10. For both

sets of experiments, we use Nyström PCG with adaptive rank selection (Algorithm 5 in Section 2.10).

For experimental details, see Section 2.11.1.

The regularization path experiments solve Equation (2.7) over a regularization path µ = 10j

where j = 3, · · · ,−6. We first solve the problem for the largest µ and then solve for progressively

smaller µ by warm starting from the previous solution. We allow every method at most 500 iterations

to reach the desired tolerance, for each value of µ.

We report the test error achieved on each dataset in Section 2.9.1. We also compare to the

test-error obtained by a sketch-and-solve approach that approximates the inverse using the Nyström

preconditioner, and which is known to admit good learning guarantees under appropriate conditions

[3, 13].

Computing the regularization path

Figure 2.3 shows how the effective dimension dµeff varies with the regularization parameter µ on

two small datasets. We see that the effective dimension reaches our chosen maximum sketch size,

smax = 0.5d for CIFAR-10 and smax = 0.4d for Guillermo, when µ is small enough. For CIFAR-10,

Nyström PCG chooses a rank much smaller than the effective dimension for small values of µ, yet

the method still performs well (Figure 2.4).

Figure 2.4 show the effectiveness of each method for computing the entire regularization path.

Nyström PCG is the fastest almost uniformly. The one exception is on CIFAR-10, where R&T

performs better for the smallest regularization parameter, for which dµeff ≈ d. That is, the O(d3)

cost of forming the R&T preconditioner is not worthwhile unless dµeff ≈ d and the regularization is

negligible.

AdaIHS is rather slow. It increases the sketch size parameter several times along the regularization

path. Each time, AdaIHS must form a new sketch of the matrix, approximate the Hessian, and

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 29

10−610−510−410−310−210−1100101102103

µ

0

500

1000

1500

2000

2500

3000

R
an

k

d

deff(µ)

` (Nyström PCG)

(a) CIFAR 10

10−610−510−410−310−210−1100101102103

µ

0

1000

2000

3000

4000

5000

R
an

k

d

deff(µ)

` (Nyström PCG)

(b) Guillermo

Figure 2.3: Ridge regression: Adaptive sketch size selection. Nyström PCG with adaptive
rank selection (Algorithm 5) selects a preconditioner whose rank is less than or equal to the effective
dimension. Error bars for the rank selected by the adaptive algorithm are so small that they are not
visible in the graph: the behavior of the adaptive algorithm is essentially deterministic across runs.
See Section 2.6.2.

compute a Cholesky factorization.

Random features regression

Table 2.3 compares the performance of Nyström PCG, AdaIHS, and R&T PCG for random features

regression. Table 2.3 shows that Nyström PCG performs best on all datasets for all metrics. The most

striking feature is the difference between sketch sizes: AdaIHS and R&T require much larger sketch

sizes than Nyström PCG, leading to greater computation time and higher storage costs. Table 2.3,

in conjunction with Table 2.2, shows the adaptive scheme in Section 2.5.4 effectively selects a rank

on the order of dµeff when the effective dimension is small or moderate.

Nyström PCG also works well for sketch sizes smaller than the effective dimension. For example,

on YearMSD-rf, Nyström PCG converges quickly despite a rank three times smaller than dµeff. For

covtype-rf, where dµeff ∼ d, the convergence is no longer as fast, but it still outperforms R&T, owing

to the expensive O(d3) cost of constructing the preconditioner. Thus, even in settings where dµeff ∼ d,

Nyström PCG may still be faster than R&T when d is large enough. For a discussion on the statistical

performance of Nyström PCG and the test set error obtained on all datasets, see Section 2.9.1.

2.6.3 Approximate cross-validation

In this subsection we use our preconditioner to compute approximate leave-one-out cross-validation

(ALOOCV), which requires solving a large linear system with multiple right-hand sides.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 30

10−610−510−410−310−210−1100101102103

µ

0

10

20

30

40

50

60

70

T
im

e(
s)

CG

AdaIHS

Rokhlin & Tygert

Nyström PCG

(a) CIFAR 10: Runtime versus µ

10−610−510−410−310−210−1100101102103

µ

0

5

10

15

20

25

T
im

e(
s)

CG

AdaIHS

Rokhlin & Tygert

Nyström PCG

(b) Guillermo: Runtime versus µ

10−610−510−410−310−210−1100101102103

µ

10−12

10−10

10−8

10−6

10−4

10−2

R
es

id
ua

l

CG

AdaIHS

Rokhlin & Tygert

Nyström PCG

Goal

(c) CIFAR 10: Residual versus µ

10−610−510−410−310−210−1100101102103

µ

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

R
es

id
ua

l

CG

AdaIHS

Rokhlin & Tygert

Nyström PCG

Goal

(d) Guillermo: Residual versus µ

Figure 2.4: Ridge regression: Runtime and residual. Nyström PCG is either the fastest
method, or it is competitive with the fastest method, for all values of the regularization parameter µ.
CG is generally the slowest method. All the methods reliably achieve the target residual along the
entire regularization path, except for ordinary CG at small values of µ. See Section 2.6.2.

Background

Cross-validation is an important machine-learning technique to assess and select models and hyper-

parameters. Generally, it requires re-fitting a model on many subsets of the data, so can take quite

a long time. The worst culprit is leave-one-out cross-validation (LOOCV), which requires running

an expensive training algorithm n times. Recent work has developed approximate leave-one-out

cross-validation (ALOOCV), a faster alternative that replaces model retraining by a linear system

solve [64, 135, 172]. In particular, these techniques yield accurate and computationally tractable

approximations to LOOCV.

To present the approach, we consider the infinitesimal jacknife (IJ) approximation to LOOCV

[64,157]. The IJ approximation computes

θ̃
n/j
IJ = θ̂ +

1

n
H−1(θ̂)∇θl(θ̂, xj), (2.22)

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 31

Table 2.3: Ridge regression: Nyström PCG versus AdaIHS and R&T PCG. Nyström PCG
outperforms AdaIHS and R&T PCG in iteration (#iters) and runtime for all datasets. Nyström
PCG also requires much less storage (sfinal). For Nyström PCG, the estimated condition number of
the preconditioned system κPCG is computed using the upper bound in Proposition 2.5.3.

Dataset Method sfinal κPCG #iters Runtime (s)

shuttle-rf
AdaIHS 10,000 - 66.9 (0.933) 66.9 (5.27)

R&T PCG 20, 000 - 60.15 242.6 (12.24)
NysPCG 800 4.17 (0.161) 13.1 (1.47) 9.78 (0.943)

smallNORB-rf
AdaIHS 12, 800 - 38.7 (1.42) 41.0 (2.46)

R&T PCG 20, 000 - 34.5 (1.31) 181.5 (6.53)
NysPCG 800 18.5 (0.753) 31.5 (0.489) 6.67 (0.372)

YearMSD-rf
AdaIHS 30, 000 - 44 1,327.3

R&T PCG 30, 000 - 49 766.5
NysPCG 2, 000 22.7 22 209.7

Higgs-rf
AdaIHS 6, 400 - 55 1,052.7

R&T PCG 20, 000 - 53 607.4
NysPCG 800 23.8 28 91.26

covtype-rf
AdaIHS 30, 000 - 211 1,633.5

R&T PCG 30, 000 - 50 846.4
NysPCG 2000 2.12e+4 430 540.05

Table 2.4: ALOOCV: Datasets and experimental parameters. For each dataset we consider
two values of µ, we aso report the exact effective dimension

Dataset n d %nz(A) µ sinit dµ
eff

Gisette 6,000 5,000 99.1%
1

1e-4
850

116
948

real-sim 72,308 20,958 0.245%
1e-4
1e-8

500
891
6,686

rcv1.binary 20,242 47,236 0.157%
1e-4
1e-8

500
779
3,463

SVHN 73,257 3,072 100%
1

1e-4
850

10
674

where H(θ̂) ∈ Rd×d is the Hessian of the loss function at the solution θ̂, for each datapoint xj . The

main computational challenge is computing the inverse Hessian vector product H−1(θ̂)∇θl(θ̂, xj).

When n is very large, we can also subsample the data and average Equation (2.22) over the subsample

to estimate ALOOCV. Since ALOOCV solves the same problem with several right-hand sides, blocked

PCG methods (here, Nyström blocked PCG) are the tool of choice to efficiently solve for multiple

right-hand sides at once. To demonstrate the idea, we perform numerical experiments on ALOOCV

for l2-regularized logistic regression. The datasets we use are all from LIBSVM [29]; see Table 2.4.

Experimental overview

We perform two sets of experiments in this section. The first set of experiments uses Gisette and

SVHN to test the efficacy of Nyström sketch-and-solve. These datasets are small enough that we can

factor H(θ) using a direct method. We also compare to block CG and block PCG with the computed

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 32

Table 2.5: ALOOCV: Small datasets. The error for a given value of µ is the maximum relative
error on 100 randomly sampled datapoints, averaged over 20 trials.

Dataset µ
Nyström

sketch-and-solve
Block CG

Block
Nyström PCG

Gisette 1 4.99e–2 2.68e–11 2.58e–12
Gisette 1e–4 1.22e–0 1.19e–11 6.59e–12
SVHN 1 9.12e–5 2.80e–13 1.26e–13
SVHN 1e–4 3.42e–1 2.01e–10 1.41e–11

Nyström approximation as a preconditioner. To assess the error due to an inexact solve for datapoint

xj , let w⋆(xj) = H−1(θ)∇θl(θ̂, xj). For any putative solution ŵ(xj), we compute the relative error

∥ŵ(xj)− w⋆(xj)∥2/∥w⋆(xj)∥2. We average the relative error over 100 data-points xj .

The second set of experiments uses the larger datasets real-sim and rcv1.binary and small values

of µ, the most challenging setting for ALOOCV. We restrict our comparison to block Nyström PCG

versus the block CG algorithm, as Nyström sketch-and-solve is so inaccurate in this regime. We

employ Algorithm 5 to construct the preconditioner for block Nyström PCG.

Nyström sketch-and-solve

As predicted, Nyström sketch-and-solve works poorly (Table 2.5). When µ = 1, the approximate

solutions are modestly accurate, and the accuracy degrades as µ decreases to 10−4. The experimental

results agree with the theoretical analysis presented in Section 2.4, which indicate that sketch-

and-solve degrades as µ decreases. In contrast, block CG and block Nyström PCG both provide

high-quality solutions for each datapoint for both values of the regularization parameter.

2.6.4 Large-scale ALOOCV experiments

Table 2.6 summarizes results for block Nyström PCG and block CG on the larger datasets. When

µ = 10−4, block Nyström PCG offers little or no benefit over block CG because the data matrices

are very sparse (see Table 2.4) and the rcv1 problem is well-conditioned (see Table 2.11).

For µ = 10−8, block Nyström PCG reduces the number of iterations substantially, but the speedup

is negligible. The data matrix A is sparse, which reduces the benefit of the Nyström method. Block

CG also benefits from the presence of multiple right-hand sides just as block Nyström PCG. Indeed,

O’Leary proved that the convergence of block CG depends on the ratio (λs + µ)/(λn + µ), where s is

is the number of right-hand sides [126]. Consequently, multiple right-hand sides precondition block

CG and accelerate convergence. We expect bigger gains over block CG when A is dense.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 33

Table 2.6: ALOOCV: Large datasets. Block Nyström PCG outperforms block CG for small µ.

Dataset µ Method #iters Runtime (s)

rcv1
1e–4 Block CG 12 11.06 (0.874)
1e–4 Block Nyström PCG 10 11.87 (0.767)

rcv1
1e–8 Block CG 52 39.03 (2.97)
1e–8 Block Nyström PCG 15 24.1 (1.79)

realsim
1e–4 Block CG 12 23.04 (2.04)
1e–4 Block Nyström PCG 8 19.05 (1.10)

realsim
1e–8 Block CG 90 163.7 (12.3)
1e–8 Block Nyström PCG 32 68.9 (5.30)

2.6.5 Kernel ridge regression

Our last application is kernel ridge regression (KRR), a supervised learning technique that uses a

kernel to model nonlinearity in the data. KRR leads to large dense linear systems that are challenging

to solve.

Background

We briefly review KRR [152]. Given a dataset of inputs xi ∈ D, their corresponding outputs bi ∈ R
for i = 1, . . . , n, and a kernel function K(x, y), KRR finds a function f⋆ : D → R in the associated

reproducing kernel Hilbert space H that best predicts the outputs for the given inputs. The solution

f⋆ ∈ H minimizes the square error subject to a complexity penalty:

f⋆ = argmin
f∈H

1

2n

n∑
i=1

(f(xi)− bi)
2 +

µ

2
∥f∥2H, (2.23)

where ∥ ·∥H denotes the norm on H. Define the kernel matrix K ∈ Rn×n with entries Kij = K(xi, xj).

The representer theorem [154] states the solution to (2.23) is

f⋆(x) =
n∑

i=1

αiK(x, xi),

where α = (α1, . . . , αn) solves the linear system

(K + nµI)α = b. (2.24)

Solving the linear system (2.24) is the computational bottleneck of KRR. Direct factorization methods

to solve (2.24) are prohibitive for large n as their costs grow as n3; for n > 104 or so, iterative methods

are generally preferred. However, K is often extremely ill-conditioned, even with the regularization

term nµI. As a result, CG for Problem (2.24) converges slowly.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 34

Experimental overview

We use Nyström PCG (NysPCG) to solve several KRR problems derived from classification problems

on real world datasets from [29, 168]. For all experiments, we use the Gaussian kernel K(x, y) =

exp(−∥x − y∥2/(2σ2)). Following [9], we take a machine learning perspective: the objective is

to minimize test set error rather than to achieve the smallest possible residual. We compare our

method to random features PCG (rfPCG), proposed in [9]. We do not compare to vanilla CG as

it is much slower than NysPCG and rfPCG. We also compare to Falkon [147], a state-of-the-art

scalable approximation method for kernel ridge regression. For Falkon, we use the author’s Matlab

implementation provided here: https://github.com/LCSL/FALKON paper. This implementation is

more optimized than the implementations of NysPCG and rfPCG, making use of C++ for several

important steps. Thus, the comparison to rfPCG and NysPCG made here is very favorable to Falkon.

All datasets either come with specified test sets, or we create one from a random 80–20 split.

The PCG tolerance, σ, and µ were all chosen to achieve good performance on the test sets (see

Table 2.8 below). In particular, the test set error on a given dataset saturates or increases if PCG

(either rfPCG or NysPCG) is not stopped after reaching the selected tolerance. Both rfPCG and

NysPCG were allowed to run for a maximum of 500 iterations. We report statistics for each dataset

and experimental parameters in Table 2.7.

In addition, Table 2.7 also reports estimates of the effective dimension and the numerical rank for

each kernel matrix. For these KRR systems, computing the exact effective dimension and numerical

rank is too expensive, even in single-precision. Instead, we use procedures described in [112] to

estimate the effective dimension and numerical rank (in single precision) of the kernel matrix, and

report only a lower bound on the effective dimension or numerical rank if the estimate exceeds

⌈0.25n⌉.
We run two sets of experiments. For the datasets with n < 105, the “oracle” method uses the a

posteriori best parameters for rfPCG (the rank of random features approximation used to construct

the preconditioner) and NysPCG (the sketch size s), chosen by grid search, which we call Or-rfPCG

and Or-NysPCG respectively. We also compare to the adaptive NysPCG algorithm (Ada-NysPCG)

described in Section 2.5.4. We restrict values for s and the rank of the random features approximation

to be less than 10, 000 to ensure the preconditioners are cheap to apply and store. Ada-NysPCG

for each dataset was initialized at s = 2, 000, which is smaller than 0.05n for all datasets. For the

datasets with n ≥ 105, we restrict both s and the rank of the random features approximation to

1, 000, which corresponds to less than 0.01n. This fixed-rank setting allows us to see how both

methods perform in the situation where the size of the preconditioner is restricted owing to memory

constraints. We then run both algorithms until they reach the desired tolerance or the maximum

number of iterations. Falkon’s main hyperparameter is the number of centers, which is typically

taken to be a small fraction of the training set. For our experiments, we selected the number of

centers via grid search using the grid {⌈0.01n⌉, ⌈0.025n⌉, ⌈0.05n⌉, ⌈0.075n⌉, ⌈0.1n⌉}. The number of

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 35

Table 2.7: Kernel ridge regression: Datasets and experimental parameters. The table
shows experimental parameters and estimates of the effective dimension and numerical rank (see
Table 2.2) of each kernel in single precision. These estimates are computed using sketching methods
as described in [112].

Dataset n d nclasses µ σ Tol d
nµ
eff NumRank

ijcnn1 49,990 49 2 1e-6 0.5 1e-3 5,269 > 12,498
MNIST 60,000 784 10 1e-7 5 1e-4 > 15, 000 > 15,000

Sensorless 48,509 48 11 1e-8 0.8 1e-4 1,948 2,331
SensIT 78,823 100 3 1e-8 3 1e-3 8,186 9,216

MiniBooNE 104,052 50 2 1e-7 5 1e-4 522 1,065
EMNIST 105,280 784 47 1e-6 8 1e-3 17,079 > 26,320
Santander 160,000 200 2 1e-6 7 1e-3 > 40,000 > 40,000

iterations used for solving the Falkon linear system is fixed at 20, matching the setting used by the

authors in https://github.com/LCSL/FALKON paper for datasets satisfying n ≲ 106.

We use column sampling to construct the Nyström preconditioner for all KRR problems. On

these problems, random projection takes longer and yields similar performance (with somewhat lower

variance).

Experimental results

Table 2.8 summarizes the results for the KRR experiments. Table 2.8 shows that both versions of

Nyström PCG perform better than random features preconditioning on all the datasets considered.

Nyström PCG also uses less storage. In the fixed-rank setting with the larger scale datasets, Nyström

PCG performs better than random features PCG. The second column in Table 2.8 shows the adaptive

strategy proposed in Section 2.5.4 to select the sketch size s works very well. In contrast, it is difficult

to choose the rank for random features preconditioning: the authors of [9] provide no guidance except

for the polynomial kernel. Moreover, the success of Nyström PCG is robust to reaching the effective

dimension. Indeed, on MNIST, EMNIST, and Santander, Table 2.7 shows s is much smaller than

dµeff, yet Nyström PCG still converges quickly using the constructed preconditioner. This robustness

is important from the viewpoint of practice, for as Table 2.7 reveals, the effective dimension dµeff is

often large.

Table 2.8 shows that good test set error is obtained on all datasets. Significantly, Nyström PCG

yields lower test set error than approximate methods such as Falkon and a sketch-and-solve style

method that simply applies the inverse of the Nyström preconditioner to the righthand side (NysPrec).

However, Falkon and NysPrec run considerably faster as they work with only a subsample of the

kernel matrix. We also see that Falkon generally outperforms NysPrec. The gap between Nyström

PCG and Falkon can be quite large, such as with EMNIST where Nyström PCG obtains an error of

15.00% compared to the 17.57% obtained by Falkon. Furthermore, we found this gap persisted even

as we varied the number of centers from 0.01n to 0.5n, at which point Falkon becomes more expensive

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 36

than Nyström PCG, see Figure 2.5. Our observation that exact methods outperform approximate

methods is consistent with findings in [9], which noted a similar performance gap between random

features PCG and the basic random features method of [136]. Thus, even in the statistical learning

setting, solving the problem more accurately using the full data does yield improved performance.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 37

Table 2.8: Kernel ridge regression: ranks, iteration count, and total runtime. We denote
random features PCG and Nyström PCG by rfPCG and NysPCG respectively. The prefixes Or
and Ada stand for oracle and adaptive. NysPrec is a sketch-and-solve style method that applies the
inverse of the Nyström preconditioner to the righthand side. The total runtime for for rfPCG and
both variants of NysPCG also includes the the time required compute the kernel matrix. All variants
of NysPCG uniformly outperforms rfPCG, in both runtime and number of iterations. NysPCG also
attains the best test error across all problem instances.

Dataset Method
Rank or
#centers

#iters
Total

Runtime (s)
Test
error

icjnn1

Or-rfPCG 3,000 63.8(2.66) 56.2(2.33)
Ada-NysPCG 2,000 43.7(1.77) 49.9(1.47) 1.25%
Or-NysPCG 3,000 31.8(0.835) 51.2(1.60)
NysPrec 3,000 - 6.09(0.151) 7.06%
Falkon 4,999 - 4.60(0.122) 1.39%

MNIST

Or-rfPCG 9,000 314.5(2.88) 291.4(6.93)
Ada-NysPCG 6,000 (1,716) 78.5(17.65) 185.8(46.39) 1.22%
Or-NysPCG 4,000 77.9(2.08) 129.4(2.08)
NysPrec 4,000 - 31.36(0.427) 34.57%
Falkon 6,000 - 7.01(0.288) 1.98%

Sensorless

Or-rfPCG 5,000 55.4(2.35) 56.5(3.96)
Ada-NysPCG 2,000 22.0(0.510) 40.0(1.26) 2.05%
Or-NysPCG 2,000 21.7(0.571) 39.3(1.63)
NysPrec 2,000 - 9.21(0.248) 3.91%
Falkon 3,639 - 3.12(0.214) 2.16%

SensIT

Or-rfPCG 7,000 68.0(4.31) 146.0(6.19)
Ada-NysPCG 2,000 47.8(1.72) 120.9(2.43) 12.83%
Or-NysPCG 2,000 48.7(3.40) 112.4(6.41)
NysPrec 2,000 - 14.10(0.321) 22.55%
Falkon 7,883 - 17.55(0.494) 13.05%

MiniBooNE

rfPCG 1,000 92 240.8
NysPCG 1,000 72 224.0 7.93%
NysPrec 1,000 - 9.06 8.90%
Falkon 10,046 - 43.03 7.96%

EMNIST

rfPCG 1,000 154 753.1
NysPCG 1,000 32 386.3 15%
NysPrec 1,000 - 9.21 26.90%
Falkon 10,528 - 24.5 17.57%

Santander

rfPCG 1,000 160 1019.7
NysPCG 1,000 31 374.1 8.90%
NysPrec 1,000 - 13.66 19.24%
Falkon 16,000 - 43.06 9.26%

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 38

0 10 20 30 40 50
%Data size

0.16

0.18

0.20

0.22

0.24

0.26

T
es

t
E

rr
or

Falkon

0 100 200 300 400 500
Time (s)

0.16

0.18

0.20

0.22

0.24

0.26

T
es

t
E

rr
or

Falkon

Nyström PCG

Figure 2.5: Falkon saturates. Falkon’s performance saturates as the number of centers increases
from 0.01n to 0.5n, and always underperforms Nyström PCG. Furthermore, once the number of
centers reaches 0.5n, Falkon runs slower than Nyström PCG.

2.7 Conclusion

We have shown that Nyström PCG delivers a strong benefit over standard CG both in the theory

and in practice, thanks to the ease of parameter selection, on a range of interesting large-scale

computational problems including ridge regression, kernel ridge regression, and ALOOCV. In our

experience, Nyström PCG outperforms all generic methods for solving large-scale dense linear systems

with spectral decay. It is our hope that this chapter motivates further research on randomized

preconditioning for solving large scale linear systems and offers a useful speedup to practitioners.

2.8 Proofs not appearing in the main chapter

2.8.1 Proof of Proposition 2.2.2

Useful facts about Gaussian random matrices

In this subsection we record some useful results about Gaussian random matrices that are necessary

for the proof of Proposition 2.2.2. The proof of Proposition 2.2.2 follows in Section 2.8.2.

Proposition 2.8.1 ([77, 120]). Let G be (s − p) × s standard Gaussian matrix with s ≥ 4 and

2 ≤ p ≤ s− 2. Then (
E∥G†∥2F

)1/2
=

√
s− p

p− 1
, (2.25)

and (
E∥G†∥2

)1/2 ≤ e

√
s

p2 − 1
. (2.26)

Remark 2.8.2. The first display in Proposition 2.8.1 appears in [77], while the second display is due

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 39

to [120].

We also require one new result, which strengthens the improved version of Chevet’s theorem due

to Gordon [70]

Proposition 2.8.3 (Squared Chevet). Fix matrices S ∈ Rr×m and T ∈ Rn×s and let G ∈ Rm×n be

a standard Gaussian matrix. Then

E∥SGT∥2 ≤ (∥S∥∥T∥F + ∥S∥F ∥T∥)2 .

We defer the proof of Proposition 2.8.3 to Section 2.8.3.

Remark 2.8.4. Chevet’s theorem states that [77]

E∥SGT∥ ≤ ∥S∥∥T∥F + ∥S∥F ∥T∥.

Proposition 2.8.3 immediately implies Chevet’s theorem by Hölder’s Inequality.

2.8.2 Proof of Proposition 2.2.2

Proof. Proposition 11.1 in [109, Sec. 11] and the argument of Theorem 11.4 in [109, Sec. 11] shows

that

∥A− Ânys∥ ≤ ∥Σs−p+1∥2 + ∥Σs−p+1Ω2Ω†
1∥2.

Taking expectations and using ∥Σs−p+1∥2 = λs−p+1 gives

E∥A− Ânys∥ ≤ λs−p+1 + E∥Σs−p+1Ω2Ω†
1∥2.

Using the law of total expectation, the second term may be bounded as follows

E∥Σs−p+1Ω2Ω†
1∥2 = E

(
EΩ1

[
∥Σs−p+1Ω2Ω†

1∥2
])

(a)

≤ E
(
∥Σs−p+1∥ ∥Ω†

1∥F + ∥Σs−p+1∥F ∥Ω†
1∥
)2

(b)

≤ 2∥Σs−p+1∥2E∥Ω†
1∥2F + 2∥Σs−p+1∥2FE∥Ω†

1∥2

(c)

≤ 2(s− p)

p− 1
λs−p+1 +

2e2s

p2 − 1

 ∑
j>s−p

λj

 ,

where in step (a) we use Squared Chevet (Proposition 2.8.3). In step (b) we invoke the elementary

identity (a + b)2 ≤ 2a2 + 2b2, and in step (c) we apply the bounds from Proposition 2.8.1. Inserting

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 40

the above display into the bound for E∥A− Ânys∥ yields

E∥A− Ânys∥ ≤
(

1 +
2(s− p)

p− 1

)
λs−p+1 +

2e2s

p2 − 1

 ∑
j>s−p

λj

 .

As the bound above holds for any 2 ≤ p ≤ s − 2, we may take the minimum over admissible p to

conclude the result.

2.8.3 Proof of Squared Chevet

In this subsection we provide a proof of Proposition 2.8.3. The proof is based on a Gaussian

comparison inequality argument, a standard technique in the high dimensional probability literature.

Proof. Let

U = {STa : ∥a∥2 = 1} ⊂ Rm

V = {Tb : ∥b∥2 = 1} ⊂ Rn

and for u ∈ U , v ∈ V consider the Gaussian processes

Yuv = ⟨u,Gv⟩+ ∥S∥ ∥v∥γ and Xuv = ∥S∥⟨h, v⟩+ ∥v∥⟨g, u⟩,

where

• G ∈ Rm×n is a Gaussian random matrix,

• g, h are Gaussian random vectors in Rm and Rn respectively,

• and γ is N(0, 1) in R.

Furthermore, G, g, h and γ are all independent.

A standard calculation shows that the conditions of Slepian’s lemma [100, Corollary 3.12, p. 72]

are satisfied. Hence we conclude that

P
(

max
u,v

Yuv > t

)
≤ P

(
max
u,v

Xuv > t

)
. (2.27)

We are now ready to prove Proposition 2.8.3. Throughout the argument below, we use the notation

X+ = max{X, 0}.
We first observe by Jensen’s inequality with respect to γ and the variational characterization of

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 41

the singular values that

Emax
u,v

(Yuv)2+ = E max
∥a∥=1,∥b∥=1

(
⟨STa,GTb⟩+ ∥S∥∥Tb∥γ

)2
+

≥ EG max
∥a∥=1,∥b∥=1

(
⟨STa,GTb⟩2

)
+

= EG∥SGT∥2.

Hence EG∥SGT∥2 is majorized by Emaxu,v (Yuv)2+. For Xuv, we note that

Emax
u,v

(Xuv)2+ ≤ Emax
u,v

X2
uv = E max

∥a∥=1,∥b∥=1

(
∥S∥⟨h, Tb⟩+ ∥Tb∥⟨g, STa⟩

)2
(a)

≤ E
(
∥S∥2∥TTh∥2 + 2∥S∥∥T∥∥TTh∥∥Sg∥+ ∥T∥2∥Sg∥2

)
(b)

≤ ∥S∥2∥T∥2F + 2∥S∥∥T∥∥S∥F ∥T∥F + ∥T∥2∥S∥2F
= (∥S∥∥T∥F + ∥T∥∥S∥F)2,

where in step (a) we expand the quadratic and use Cauchy-Schwarz. Step (b) follows from a

straightforward calculation and Hölder’s inequality.

To conclude, we use integration by parts and (2.27) to obtain

EG∥SGT∥2 ≤ Emax
u,v

(Yuv)2+ =

∫ ∞

0

tP
(

max
u,v

(Yuv)+ > t

)
dt

=

∫ ∞

0

tP
(

max
u,v

Yuv > t

)
dt ≤

∫ ∞

0

tP
(

max
u,v

Xuv > t

)
dt

=

∫ ∞

0

tP
(

max
u,v

(Xuv)+ > t

)
dt = Emax

u,v
(Xuv)2+

≤ (∥S∥∥T∥F + ∥T∥∥S∥F)2,

completing the proof.

2.8.4 Proof of Proposition 2.3.1

We require the following fact from [18, Chapter X] ,

Lemma 2.8.5 ([18] Lemma X.1.4.). Let A,B be psd matrices. Then

∣∣∣∣∣∣(A + I)−1 − (A + B + I)−1
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣B(B + I)−1

∣∣∣∣∣∣
for every unitarily invariant norm.

Proof of Proposition 2.3.1. We first prove (2.11). Under the hypotheses of Proposition 2.3.1, we may

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 42

strengthen Lemma 2.8.5 by scaling the identity to deduce

∥(Â + µI)−1 − (A + µI)−1∥ ≤ 1

µ
∥(E + µI)−1E∥.

Recall that the function f(t) = t
t+µ is matrix monotone, so that A ⪯ B implies f(A) ⪯ f(B). As

E ⪯ ∥E∥I, it follows that

∥(Â + µI)−1 − (A + µI)−1∥ ≤ 1

µ

∥E∥
∥E∥+ µ

.

Hence we have established the desired inequality.

Next we show the bound is attained when Â = [A]s. Applying the Woodbury identity, we may

write

([A]s + µI)−1 = Vs(Λ̂s + µI)−1V T
s +

1

µ
(I − VsV

T
s).

Using the eigendecomposition of A = VsΛsV
T
s + Vn−sΛn−sV

T
n−s, we obtain

([A]s + µI)−1 − (A + µI)−1 =
1

µ
(I − VsV

T
s)− Vn−s(Λn−s + µI)−1V T

n−s

=
1

µ
Vn−s(I − (Λn−s + µI)−1)V T

n−s

=
1

µ
Vn−s

(
Λn−s(Λn−s + µI)−1

)
V T
n−s.

Hence

∥(A + µI)−1 − ([A]s + µI)−1∥ =
λs+1

µ(λs+1 + µ)
.

2.8.5 Proof Theorem 2.4.2

This result contains the analysis of the Nyström sketch-and-solve method. We begin with Equa-

tion (2.13), which provides an error bound that compares the regularized inverse of a psd matrix A

with the regularized inverse of the randomized Nyström approximation Ânys. Since 0 ⪯ Ânys ⪯ A,

we can apply Proposition 2.3.1 to obtain a deterministic bound for the discrepancy:

∥(Ânys + µI)−1 − (A + µI)−1∥ ≤ 1

µ

∥E∥
∥E∥+ µ

where E = A− Ânys.

The function f(t) = t/(t + µ) is concave, so we can take expectations and invoke Jensen’s inequality

to obtain

E∥(Ânys + µI)−1 − (A + µI)−1∥ ≤ 1

µ

E∥E∥
E∥E∥+ µ

.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 43

Inserting the bound Equation (2.10) on E∥E∥ from Corollary 2.2.3 gives

E∥(Ânys + µI)−1 − (A + µI)−1∥ ≤ 1

µ
· (3 + 4e2srp(A)/p)λp

µ + (3 + 4e2srp(A)/p)λp
.

To conclude, observe that the denominator of the second fraction exceeds µ + λp.

Now, let us establish Equation (2.14), the error bound for Nyström sketch-and-solve. Introduce

the solution x̂ to the Nyström sketch-and-solve problem and the solution x⋆ to the regularized linear

system:

(Ânys + µI)ŵ = b and (A + µI)w⋆ = b.

We may decompose the regularized matrix as A + µI = Ânys + µI + E. Subtract the two equations

in the last display to obtain

(Ânys + µI)(ŵ − w⋆)− wx⋆ = 0.

Rearranging to isolate the error in the solution, we have

ŵ − w⋆ = (Ânys + µI)−1Ew⋆.

Take the norm, apply the operator norm inequality, and use the elementary bound ∥(Ânys +µI)−1∥ ≤
µ−1. We obtain

∥ŵ − w⋆∥2
∥w⋆∥2

≤ ∥E∥
µ

.

Finally, take the expectation and repeat the argument used to control E∥E∥/µ in the proof of

Theorem 2.5.1.

2.8.6 Proof of statements for the optimal low-rank preconditioner P⋆

We show that P⋆ from Section 2.5 is the best symmetric positive definite preconditioner that acts as

a multiple of the identity off Vs.

Lemma 2.8.6. Let P = {P : P = VsMV T
s + β(I − VsV

T
s) where β > 0 and M ∈ S+s (R)}. With this

parametrization, define P⋆ by setting M = 1
λs+1+µ (Λs + µI) and β = 1. Then for any symmetric psd

matrix A and µ ≥ 0,

min
P∈P

κ2(P−1/2AµP
−1/2) =

λs+1 + µ

λn + µ
, (2.28)

P⋆ = argmin
P∈P

κ2(P−1/2AµP
−1/2). (2.29)

Proof. We first prove the lefthand side of (2.28) is always at least as large as the righthand side, and

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 44

then show the bound is attained by P⋆. Given P ∈ P, we have

P−1/2AµP
−1/2 = VsM

−1/2(Λs + µI)M−1/2V T
s +

1

β
Vn−s(Λn−s + µI)V T

n−s.

For any 1 ≤ i, j ≤ n,

κ2(P−1/2AµP
−1/2) =

λ1(P−1/2AµP
−1/2)

λn(P−1/2AµP−1/2)
≥ λi(P

−1/2AµP
−1/2)

λj(P−1/2AµP−1/2)
.

From our expression for P−1/2AµP
−1/2, we see that (λs+1 + µ)/γ, (λn + µ)/γ are eigenvalues of

P−1/2AµP
−1/2. Hence for any P ∈ P, the following inequality holds:

κ2(P−1/2AµP
−1/2) ≥ λs+1 + µ

λn + µ
,

proving (2.28). Using the definition of P⋆, we see

P
−1/2
⋆ AµP

−1/2 = (λs+1 + µ)VsV
T
s + Vn−s(Λn−s + µI)V T

n−s,

κ2(P
−1/2
⋆ AµP

−1/2
⋆) = (λs+1 + µ)/(λn + µ).

Proof of Proposition 2.5.3

Let Â = U Λ̂UT be an rank-s Nyström approximation constructed from an arbitrary test matrix,

whose sth eigenvalue is λ̂s. Proposition 2.5.3 provides a deterministic bound on the condition number

of the regularized matrix Aµ after preconditioning with

P =
1

λ̂s + µ
U(Λ̂ + µI)UT + (I − UUT).

We remind the reader that this argument is completely deterministic.

First, note that the preconditioned matrix P−1/2AµP
−1/2 is psd, so

κ2(P−1/2AµP
−1/2) =

λ1(P−1/2AµP
−1/2)

λn(P−1/2AµP−1/2)
.

Let us begin with the upper bound on the condition number. We have the decomposition

P−1/2AµP
−1/2 = P−1/2(Â + µI)P−1/2 + P−1/2EP−1/2, (2.30)

owing to the relation Aµ = Â + µI + E. Recall that the error matrix E is psd, so the matrix

P−1/2EP−1/2 is also psd.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 45

First, we bound the maximum eigenvalue. Weyl’s inequalities imply that

λ1(P−1/2AµP
−1/2) ≤ λ1(P−1/2(Â + µI)P−1/2) + λ1(P−1/2EP−1/2).

To determine λ1(P−1/2(Â + µI)P−1/2), we write Â + µI = U(Λ̂ + µI)UT + µU⊥UT
⊥ , where U⊥ is an

orthonormal basis for the eigenvectors orthogonal to U . From this and the definition of P−1, we

obtain.

P−1/2(Â + µI)P−1/2 = (λ̂s + µ)UUT + µU⊥U
T
⊥ .

The preceding display immediately yields λ1(P−1/2(Â + µI)P−1/2) = λ̂s + µ. We now turn to

bounding λ1(P−1/2EP−1/2). When s < n, we have λ1(P−1) = 1. Therefore,

λ1(P−1/2EP−1/2) = λ1(P−1E) ≤ λ1(P−1)λ1(E) = λ1(E) = ∥E∥.

In summary,

λ1(P−1/2AµP
−1/2) ≤ λ̂s + µ + ∥E∥. (2.31)

For the minimum eigenvalue, we first assume that µ > 0. Apply Weyl’s inequality to Equation (2.30)

to obtain to obtain

λn(P−1/2AµP
−1/2) ≥ λn(P−1/2(Â + µI)P−1/2) + λn(P−1/2EP−1/2)

≥ λn(P−1/2(Â + µI)P−1/2) = µ.
(2.32)

Combining Equation (2.31) and Equation (2.32), we reach

κ2(P−1/2AµP
−1/2) ≤ λ̂s + µ + ∥E∥

µ
.

This gives a bound for the maximum in case µ > 0.

If we only have µ ≥ 0, then a different argument is required for the smallest eigenvalue. Assume

that A is positive definite, in which case λ̂s > 0. As P−1/2AµP
−1/2 is symmetric positive definite we

have

λn(P−1/2AµP
−1/2) =

1

λ1(P 1/2A−1
µ P 1/2)

.

Conjugating by A
1/2
µ P−1/2 and using similarity, we obtain the equality

λ1(P 1/2A−1
µ P 1/2) = λ1(A−1/2

µ PA−1/2
µ).

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 46

Hence it suffices to produce an upper bound for λ1(A
−1/2
µ PA

−1/2
µ). To that end, we expand

λ1(A−1/2
µ PA−1/2

µ) = λ1

(
A−1/2

µ

(
1

λ̂s + µ
(Â + µUUT) + (I − UU)T

)
A−1/2

µ

)
≤ 1

λ̂s + µ
λ1

(
A−1/2

µ (Â + µUUT)A−1/2
µ

)
+ λ1

(
A−1/2

µ

(
I − UUT

)
A−1/2

µ

)
.

The second inequality is Weyl’s. Since Â ⪯ A, we have Â + µUUT ⪯ Aµ. The last display simplifies

to

λ1(A−1/2
µ PA−1/2

µ) ≤ 1

λ̂s + µ
+

1

λn + µ
.

Putting the pieces together with Equation (2.31), we obtain

κ2(P−1/2AµP
−1/2) ≤ (λ̂s + µ + ∥E∥)

(
1

λ̂s + µ
+

1

λn + µ

)
.

Thus,

κ2(P−1/2AµP
−1/2) ≤

(
λ̂s + µ + ∥E∥

)
min

{
1

µ
,

λ̂s + λn + 2µ

(λ̂s + µ)(λn + µ)

}
.

This formula is valid when A is positive definite or when µ > 0.

We now prove the lower bound on κ2(P−1/2AµP
−1/2). Returning to Equation (2.30) and invoking

Weyl’s inequalities yields

λ1(P−1/2AµP
−1/2) ≥ λ1(P−1/2(Â + µI)P−1/2) + λn(P−1/2EP−1/2) ≥ λ̂s + µ.

For the smallest eigenvalue we observe that

λn(P−1/2AµP
−1/2) = λn(AµP

−1) ≤ λn(Aµ)λ1(P−1) = λn + µ.

Where the last inequality in the preceding display follows from the identity

λj(AB) ≤ λj(A)λ1(B),

which holds for symmetric positive definite matrices A and B. Combining the last two displays, we

obtain
λ̂s + µ

λn + µ
≤ κ2(P−1/2AµP

−1/2).

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 47

Condition numbers always exceed one, so

max

{
λ̂s + µ

λn + µ
, 1

}
≤ κ2(P−1/2AµP

−1/2).

This point concludes the argument.

Proof of Lemma 2.5.4

Lemma 2.5.4 establishes the central facts about the effective dimension. First, we prove Item 1. Fix

a parameter γ ≥ 1, and set j⋆ = max{1 ≤ j ≤ n : λj > γµ}. We can bound the effective dimension

below by the following mechanism.

dµeff =

n∑
j=1

λj

λj + µ
≥

j⋆∑
j=1

λj

λj + µ
≥ j⋆ ·

λj⋆

λj⋆ + µ
.

We have used the fact that t 7→ t/(1 + t) is increasing for t ≥ 0, Solving for j⋆, we determine that

j⋆ ≤ (1 + µ/λj⋆)dµeff < (1 + γ−1)dµeff.

The last inequality depends on the definition of j⋆. This is the required result.

Item 2 follows from a short calculation:

1

k

∑
j>k

λj =
λk + µ

k

∑
j>k

λj

λk + µ
≤ λk + µ

k

∑
j>k

λj

λj + µ

=
λk + µ

k

dµeff −
k∑

j=1

λj

λj + µ

 ≤ λk + µ

k

(
dµeff −

kλk

λk + µ

)

=
µdµeff
k

+ λk

(
dµeff
k
− 1

)
≤ µdµeff

k
.

The last inequality depends on the assumption that k ≥ dµeff.

2.8.7 Proof of Corollary 2.5.2

This result gives a bound for the relative error δt in the iterates of PCG. Recall the standard

convergence bound for CG [161, Theorem 38.5]:

δt ≤ 2

(√
κ2(P−1/2AµP−1/2)− 1√
κ2(P−1/2AµP−1/2) + 1

)t

.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 48

We conditioned on the event that {κ(P−1/2AµP
−1/2) ≤ 56}. On this event, the relative error must

satisfy

δt < 2

(√
56− 1√
56 + 1

)t

≤ 2 · (0.77)t.

Solving for t, we see that δt < ϵ when t ≥ ⌈3.8 log (1/ϵ)⌉. This concludes the proof.

2.8.8 Proof of Theorem 2.5.5

Theorem 2.5.5 establishes that with high probability Algorithm 5 terminates in a logarithmic number

of steps, the sketch size remains O(dδτµeff), and PCG with the preconditioner constructed from the

output converges fast.

Proof. We first recall with the tolerances chosen in Theorem 2.5.5 that Algorithm 5 terminates when

the event

E = {∥E∥ ≤ τµ} ∩
{
λ̂s ≤

τµ

11

}
holds. Observe that conditioned on E , Proposition 2.5.3 yields

κ2(P−1/2AµP
−1/2) ≤ λ̂s + µ + ∥E∥

µ
≤ 1 +

(
1 +

1

11

)
τ = 1 +

12

11
τ.

Statement 3 now follows from the above display and the standard convergence theorem for CG.

Now, if Algorithm 5 terminates with N ≤ ⌈log2 (s̃/s0)⌉ − 1 steps of sketch size doubling, then E
holds with probability 1. Statement 3 then follows by our initial observation, while statements 1 and

2 hold trivially. Hence statements 1-3 all hold if the algorithm terminates in N ≤ ⌈log2 (s̃/s0)⌉ − 1

steps.

Thus to conclude the proof, it suffices to show that if N ≥ ⌈log2 (s̃/s0)⌉, then E holds with

probability at least 1− δ, which implies that statements 1-3 hold with probability at least 1− δ, as

above.

We now show that E holds with probability at least 1− δ when N = ⌈log2 (s̃/s0)⌉. To see this

note that when N = ⌈log2 (s̃/s0)⌉, we have s ≥ s̃. Consequently, we may invoke Proposition 2.2.2

with p = ⌈2dδτµ/11eff ⌉+ 1 and Lemma 2.5.4 to show

E[∥E∥]
(1)

≤ 3λp +
2e2

p

 n∑
j=p

λj


(2)

≤ 3
δτµ

11
+ 2e2

deff(δτµ/11)

p

δτµ

11
(3)

≤ 3

11
δτµ +

2e2

2

δτµ

11
=

(
3 + e2

11

)
δτµ ≤ δτµ.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 49

Where step (1) uses Proposition 2.2.2, step (2) uses items 1 and 2 of Lemma 2.5.4 with γ = 1, and

step (3) follows from p ≥ 2dδτµeff . Thus,

E[∥E∥] ≤ δτµ.

By Markov’s inequality,

P{∥E∥ > τµ} ≤ δ.

Hence {∥E∥ ≤ τµ} holds with probability at least 1 − δ. Furthermore, by Lemma 2.5.4 we have

{λ̂s ≤ δτµ/11} with probability 1 as λ̂s ≤ λs ≤ λp. Thus when N = ⌈log2 (s̃/s0)⌉, E holds with

probability at least 1− δ, this immediately implies statements 1 and 3. Statement 2 follows as

s = 2Ns0 ≤ 2log2(s̃/s0)+1s0 = 2s̃ = 4⌈2dδτµ/11eff ⌉+ 2,

where in the first inequality we used ⌈x⌉ ≤ x + 1, this completes the proof.

2.8.9 Proof of Proposition 2.5.7

Proposition 2.5.7 shows once s = Ω (deff(τµ)), then with high probability κ2(P−1/2AµP
−1/2) differs

from (λ̂s + µ) by at most a constant.

Proof. Proposition 2.5.3 implies that(
κ2(P−1/2AµP

−1/2)− λ̂s + µ

µ

)
+

≤ ∥E∥
µ

.

Combining the previous display with Markov’s inequality yields

P

{(
κ2(P−1/2AµP

−1/2)− λ̂s + µ

µ

)
+

>
τ

δ

}
≤ δ

τ

E[∥E∥]
µ

.

Now, our choice of s combined with Proposition 2.2.2 and Lemma 2.5.4 implies that E[∥E∥] ≤ τµ.

Hence we have

P

{(
κ2(P−1/2AµP

−1/2)− λ̂s + µ

µ

)
+

>
τ

δ

}
≤ δ,

which implies the desired claim.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 50

Table 2.9: Ridge regression: Test set error. We report the relative error for regression tasks
and the misclassification rate for classification tasks. Nyström PCG outperforms the Nyström
preconditioner on nearly all the datasets.

Dataset Method Test set error

CIFAR-10
Nyström Preconditioner 9.51%

Nyström PCG 8.67%

Guillermo
Nyström Preconditioner 32.5%

Nyström PCG 32.6%

shuttle-rf
Nyström Preconditioner 0.20%

Nyström PCG 0.22%

smallnorb-rf
Nyström Preconditioner 57.92%

Nyström PCG 16.14%

YearMSD-rf
Nyström Preconditioner 5.48e–3

Nyström PCG 4.55e–3

Higgs-rf
Nyström Preconditioner 3.49%

Nyström PCG 0.05%

Covtype-rf
Nyström Preconditioner 20.76%

Nyström PCG 9.39%

2.9 Additional numerical results

2.9.1 Ridge regression experiments

Here, we report the test error obtained on datasets considered in Section 2.6.2 and the implications

of these results.

Table 2.9 compares the test error obtained using the Nyström PCG solution with that of a sketch-

and-solve approach we call Nyström preconditioner, which uses P−1 (the inverse of the Nyström

preconditioner) to approximate (1/nXTX + µI)−1.

Nyström PCG outperforms, especially on the larger datasets n ≥ 105, and even for datasets where

the effective dimension is small, such as Higgs-rf. Hence even in the statisical learning setting, where

one only cares about test error, solving the ridge regression problem accurately improves statistical

performance.

2.10 Adapative rank selection via a-posteriori error estima-

tion

2.10.1 Randomized powering algorithm

The pseudo-code for estimating ∥E∥ by the randomized power method is given in Algorithm 4

The pseudocode for adaptive rank selection by a-priori error estimation is given in Algorithm 5.

The code is structured to reuse use the previously computed Ω and Y , resulting in significant

computational savings. The error ∥E∥ is estimated from q iterations of the randomized power method

on the error matrix A− U Λ̂UT .

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 51

Algorithm 4 Randomized Power method for estimating ∥E∥
1: Input: symmetric PSD matrix A ∈ Rn×n, approximate eigenvectors U , approximate eigenvalues

Λ̂, and number of power iterations q.
2: g = randn(n, 1)
3: v0 = g

∥g∥2

4: for i = 1, . . . , q do
5: v = Av0 − U(Λ̂(UT v0))
6: Ê = vT0 v
7: v = v

∥v∥2

8: v0 ← v
9: end for

10: Output: estimate Ê of ∥E∥

2.11 Additional experimental details

Here we provide additional details on the experimental procedure and the methods we compared to.

2.11.1 Ridge regression experiments

All of the datasets used in our ridge regression experiments are classification datasets. We converted

them to regression problems by using a one-hot vector encoding. The target vector b was constructed

by setting bi = 1 if example i has the first label and 0 otherwise. We did no data pre-processing

except on CIFAR-10, where we scaled the matrix by 255 so that all entries lie in [0, 1].

We now give an overview of the hyperparameters of each method. The R&T preconditioner has

only one hyperparameter: the sketch size sRT. AdaIHS has five hyperparameters: ρ, λρ,Λρ, µgd(ρ),

and cgd(ρ). The hyperparameter ρ ∈ (0, 1) controls the remaining four hyperparameters, which are

set to the values recommended in [96]. For the regularization path experiments, sRT and ρ were

chosen by grid search to minimize the time taken to solve the linear systems over the regularization

path. We chose sRT from the linear grid jd, where j ∈ {1, . . . , 8}. Additionally, we restrict j ≤ 4 for

Guillermo as jd ≥ n when j ≥ 5, and hence no benefit is gained over a direct method. For AdaIHS,

ρ was chosen from the linear grid ρ = j × 10−1 where j ∈ {1, . . . , 9}. We set the initial sample size

for AdaIHS to s = 100 for both sets of experiments.

We reused computation as much as possible for both R&T and AdaIHS, which we now detail. To

construct the R&T preconditioner, we incur a O(nd log(n) + sRTd
2) to cache the Gram matrix and

pay an O(d3) to update the preconditioner for each value of µ. In the case of AdaIHS, for each value

of µ we cache the sketch SA and the corresponding Gram matrix. We then use them for the next

value of µ on the path until the adapativity criterion of the algorithm deems a new sketch necessary.

For AdaIHS computing the sketch only costs O(nd log(n)).

We now give the parameters for the random features experiments. For Shuttle-rf we used random

features corresponding to a Gaussian kernel with bandwidth parameter σ = 0.75, we set µ = 10−8/n.

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 52

For smallNORB-rf we used ReLU random features with µ = 6 × 10−4. We selected the AdaIHS

parameter ρ from the same grid used for the ridge regression experiments. We also capped the sketch

size for AdaIHS at smax = 10, 000.

Finally, we give the details of our implementation of Nyström PCG. For both sets of experiments

we used Algorithm 5 initialized at s = 100, with an error tolerance of 30µ, and q = 5 power iterations.

To avoid trivialities, the rank of the preconditioner is capped at smax = 0.5d for CIFAR-10 and

smax = 0.4d for Guillermo. For the random features experiments we capped s at smax = 2000. In the

regularization path experiments, we keep track of the latest estimate Ê of ∥E∥, and do not compute

a new Nyström approximation unless Ê is larger than the error tolerance for the new regularization

parameter. When we compute the new Nyström approximation, the adaptive algorithm is initialized

with a target rank of twice the old one.

The values of hyperparameters used for all experiments are summarized in Table 2.10.

Table 2.10: Ridge regression: Experimental parameters.

Dataset
(R&T) sketch

size
AdaIHS rate

Initial AdaIHS
sketch size

Initial
Nyström

rank

CIFAR-10 3d ρ = 0.3 100 100
Guillermo d ρ = 0.3 100 100
shuttle-rf NA ρ = 0.1 100 100

smallNORB-rf NA ρ = 0.3 100 100

2.11.2 ALOOCV

The datasets were chosen so that n and d are both large, the challenging regime for ALOOCV. The

first three datasets are binary classification problems, while SVHN has multiple classes. For SVHN

we created a binary classification problem by looking at the first class vs. remaining classes.

For the large scale problems the adaptive algorithm for Nyström PCG was initialized at s0 = 500

and is capped at smax = 4000. We set the solve tolerances for both algorithms to 10−10. As before,

we sample 100 points randomly from each dataset.

2.11.3 Kernel ridge regression

We converted the binary classification problem to a regression problem by constructing the target

vector as follows: We assign +1 to the first class and -1 to the second class. For multi-class problems,

we do one-vs-all classification; this formulation leads to multiple right hand sides, so we use block

PCG for both methods. We did no data pre-processing except for MNIST, whose data matrix was

scaled by 255 so that its entries lie in [0, 1]. The number of random features, mrf from the linear grid

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 53

mrf = j × 103 for j = 1, . . . , 9. For adaptive Nyström PCG we capped the maximum rank for the

preconditioner at smax = ⌊0.1n⌋ and used a tolerance of 40 for the ratio λ̂s/nµ on all datasets.

2.12 Additional numerical results

Here we include some additional numerical results not appearing in the main chapter.

2.12.1 ALOOCV

Table 2.11 contains more details about the preconditioner and preconditioned system for the large

scale ALOOCV experiments in Section 2.6.3. The original condition number in Table 2.11 below

is estimated as follows. First we compute the top eigenvalue of the Hessian using Matlab’s eigs()

command, then we divide this by µ.

Dataset
Nyström

rank

Preconditioner

construction

time(s)

Condition

number

estimate

Preconditioned

condition

number

estimate

rcv1 (µ = 1× 10−4) 1000 19.5 (0.523) 21.6 2.98 (0.081)

rcv1 (µ = 1× 10−8) 4000 100.6 (3.46) 5.70e+3 17.2 (0.218)

realsim (µ = 1× 10−4) 3100 (1.41e+3) 82.01(2.04) 10.0 1.70 (0.2324)

realsim (µ = 1× 10−8) 4000 108.3 (6.21) 2.13e+4 62.4 (0.945)

Table 2.11: ALOOCV: additional details for large-scale experiments. For µ = 10−4 the
Hessian is well-conditioned for both datasets, so there is little value to preconditioning. For µ = 10−8,
the ill-conditioning of the Hessian increases significantly, making preconditioning more valuable.
Furthermore, as ALOOCV uses Block PCG on at least several batches of data points, the cost of
constructing the preconditioner is negligible compared to the cost of solving the linear systems (see
Table 2.6 in Section 2.6.3).

CHAPTER 2. RANDOMIZED NYSTRÖM PRECONDITIONING 54

Algorithm 5 Adaptive Randomized Nyström Approximation

1: Input: symmetric psd matrix A, initial rank s0, maximum rank smax, number of power iterations
for estimating E, error tolerance TolErr, ratio tolerance TolRat

2: Y = [],Ω = [], E = Inf, and λ̂s = Inf
3: m = s0
4: while E > TolErr and λ̂s/µ > TolRat do
5: Generate Gaussian test matrix Ω0 ∈ Rn×m

6: [Ω0,∼] = qr(Ω0, 0)
7: Y0 = AΩ0

8: Ω = [Ω Ω0] and Y = [Y Y0]
9: ν =

√
n eps(norm(Y, 2))

10: Yν = Y + νΩ,
11: C = chol(ΩTYν)
12: B = Yν/C
13: Compute [U,Σ,∼] = svd(B, 0)
14: Λ̂ = max{0,Σ2 − νI} {remove shift}
15: E = RandomizedPowerErrEst(A,U, Λ̂, q) {estimate error}
16: m← s0, s0 ← 2s0 {double rank if tolerances are not met}
17: if s0 > smax then
18: s0 = s0 −m {when s0 > smax, reset to s0 = smax}
19: m = smax − s0
20: Generate Gaussian test matrix Ω0 ∈ Rn×m

21: [Ω0,∼] = qr(Ω0, 0)
22: Y0 = AΩ0

23: Ω = [Ω Ω0] and Y = [Y Y0]
24: ν =

√
n eps(norm(Y, 2)) {compute final approximation and break}

25: Yν = Y + νΩ,
26: C = chol(ΩTYν)
27: B = Yν/C
28: Compute [U,Σ,∼] = svd(B, 0)
29: Λ̂ = max{0,Σ2 − νI}
30: break
31: end if
32: end while
33: Output: Nyström approximation (U, Λ̂)

Chapter 3

NysADMM

3.1 Introduction

Consider the composite convex optimization problem

minimizew∈Rd ℓ(Xw; b) + r(w). (3.1)

We assume that ℓ and r are convex and ℓ is smooth. In machine learning, generally ℓ is a loss function,

r is a regularizer, X ∈ Rn×d is a feature matrix, and b ∈ Rn is the label or response. Throughout the

chapter we assume that a solution to (3.1) exists. A canonical example of (3.1) is the lasso problem,

minimize
1

2
∥Xw − b∥22 + γ∥w∥1, (3.2)

where ℓ(Xw; b) = 1
2∥Xw−b∥22 and r(x) = γ∥w∥1. We discuss more applications of (3.1) in Section 3.3.

The alternating directions method of multipliers (ADMM) is a popular algorithm to solve

optimization problems of the form (3.1). However, when the matrix X is large, each iteration of

ADMM requires solving a large subproblem. For example, consider the lasso where the loss ℓ is

quadratic. At each iteration, ADMM solves a regularized least-squares problem at a cost of O(nd2)

flops. On the other hand, it is not necessary to solve each subproblem exactly to ensure convergence:

ADMM strategies that solve the subproblems inexactly are called inexact ADMM, and can be shown

to converge when the sequence of errors is summable [48]. Unfortunately, it can be challenging even

to satisfy this relaxed criterion. Consider again the lasso problem. At each iteration, inexact ADMM

solves the regularized least-squares subproblem (3.4) approximately, for example, using the iterative

method of conjugate gradients (CG). We call this method inexact ADMM with CG. The number of

CG iterations required to achieve accuracy ϵ increases with the square root of the condition number

κ of the regularized Hessian, O
(√

κ log(κ
ϵ)
)
. Alas, the condition number of large-scale data matrices

is generally high, and later iterations of inexact ADMM require high accuracy, so inexact ADMM

55

CHAPTER 3. NYSADMM 56

with CG still converges too slowly to be practical.

In this work we show how to speed up inexact ADMM using preconditioned conjugate gradients

(PCG) as a subproblem solver. We will precondition with the randomized Nyström preconditioner

from Chapter 2. We call the resulting algorithm NysADMM (“nice ADMM”): inexact ADMM

with PCG using randomized Nyström preconditioning. As shown in Chapter 2, the Nyström

preconditioner reduces the number of iterations required to solve the subproblem to ϵ-accuracy to

O
(
log(1

ϵ)
)
, independent of the condition number. To make Nyström PCG applicable when ℓ is not

quadratic, NysADMM uses linearized inexact ADMM to transform the subproblem into a linear

system solve.

3.1.1 Contributions

1. We provide a general algorithmic framework for solving large scale lasso, l1-regularized logistic

regression, and SVM problems.

2. Our theory shows that at each iteration, modulo logarithmic factors, only a constant number

of matrix vector products (matvecs) are required to solve the ADMM subproblem, provided we

have constructed the preconditioner appropriately. If the loss function is quadratic, modulo

logarithmic factors, only a constant number of matvecs are required to achieve convergence.

3. We develop a practical adaptive algorithm that increases the rank until the conditions of our

theory are met, which ensures the theoretical benefits of the method can be realized in practice.

4. Even a preconditioner with lower rank often succeeds in speeding up inexact ADMM with PCG.

Our analysis is also able to explain this phenomenon.

5. Our algorithm beats standard solvers such as glmnet, SAGA, and LIBSVM on large dense

problems like lasso, logistic regression, and kernalized SVMs: it yields equally accurate solutions

and often runs 2–4 times faster.

3.1.2 Related work

Our work relies on recent advancements in RandNLA for solving regularized least squares problems

(XTX + µI)w = XT b for w, given a design matrix X ∈ Rn×d, righthand side b ∈ Rn, and

regularization µ ∈ R, using a sketch of the design matrix A [96]. NysADMM adapts the randomized

Nyström preconditioner from Chapter 2. Recall, these algorithms begin by forming a sketch Y = XΩ

of X (or XT) with a random dimension reduction map Ω ∈ Rd×s [109,173]. For example, Ω may be

chosen to have iid Gaussian entries. These algorithms obtain significant computational speedups

by using a sketch size s ≪ min{n, d} and working with the sketch in place of the original matrix

to construct a preconditioner for the linear system. Chapter 2 along with the work [96] show that

these randomized preconditioners work well when the sketch size grows with the effective dimension

CHAPTER 3. NYSADMM 57

(Equation (2.19)) of the Gram matrix (assuming, for [96] that we have access to a matrix square

root). As the effective dimension is never larger than d and often significantly smaller, these results

substantially improve on prior work in randomized preconditioning [114,144] that requires a sketch

size s ≳ d. Many applications require even smaller sketch sizes: for example, for NysADMM, a fixed

sketch size s = 50 suffices even for extremely large problems.

We are not the first to use RandNLA to accelerate iterative optimization. [71, 132] both use

iterative sketching to accelerate Newton’s method, while [32] use randomized preconditioning to

accelerate interior point methods for linear programmming. The approach taken here is closest

in spirit to [32], as we also use randomized preconditioning. However, the preconditioner used

in [32] requires the data matrix to have many more columns than rows, while ours can handle any

(sufficiently large) dimensions.

NysADMM can solve many traditional machine learning problems, such as lasso, regularized

logistic regression, and support vector machines (SVMs). In contrast, standard solvers for these

problems use a wider variety of convex optimization techniques. For example, one popular lasso

solver, glmnet [60], relies on coordinate descent (CD), while solvers for SVMs, such as LIBSVM [29],

more often use sequential minimal optimization [133], a kind of pairwise CD on the dual problem.

For regularized logistic regression, especially for l1-regularization, stochastic gradient algorithms are

most commonly used [38, 151]. Other authors propose to solve lasso with ADMM [23, 179]. Our

work, motivated by the ADMM quadratic programming framework of [155], is the first to accelerate

ADMM with randomized preconditioning, thereby improving on the performance of standard CD

or stochastic gradient solvers for each of these important classes of machine learning problems on

large-scale dense data. Unlike [155], our work relies on inexact ADMM and can handle non-quadratic

loss functions, which allows NysADMM to solve problems such as regularized logistic regression.

3.1.3 Organization of the chapter

Section 3.2 introduces the NysADMM algorithm. Section 3.3 lists a variety of applied problems that

can be solved by NysADMM. Section 3.4 states the theoretical guarantees for NysADMM. Section 3.5

compares NysADMM and standard optimization solvers numerically on several applied problems.

Section 4.6 summarizes the results of the chapter and discusses directions for future work.

3.1.4 Notation and preliminaries

We call a matrix psd if it is positive semidefinite. The notation a ≳ b means that a ≥ Cb for

some absolute constant C. Given a matrix H, we denote its spectral norm by ∥H∥. We denote the

Moore-Penrose pseudoinverse of a matrix M by M†. For ρ > 0 and a symmetric psd matrix H, we

define Hρ = H + ρI. We say a positive sequence {εk}∞k=1 is summable if
∑∞

k=1 ε
k <∞. We denote

the Loewner ordering on the cone of symmetric psd matrices by ⪯, that is A ⪯ B if and only if

B −A is psd.

CHAPTER 3. NYSADMM 58

3.2 Algorithm

3.2.1 Inexact linearized ADMM

To solve problem (3.1), we apply the ADMM framework. Algorithm 6 presents the standard ADMM

updates.

Algorithm 6 ADMM

Input: design matrix X, response b, loss function ℓ, regularization r, stepsize ρ

repeat

wk+1 = argminw{ℓ(Xw; b) + ρ
2∥w − zk + uk∥22}

zk+1 = argminz{r(z) + ρ
2∥wk+1 − z + uk∥22}

uk+1 = uk + wk+1 − zk+1

until convergence

Output: solution w⋆ of problem (3.1)

In each iteration, two subproblems are solved sequentially to update variables w and z. The

z-subproblem often has a closed-form solution. For example, if r(w) = ∥w∥1, the z-subproblem is the

soft thresholding, and if r is the indicator function of a convex set C, the z-subproblem is projection

onto the set C.
There is usually no closed-form solution for the w-subproblem. Instead, it is usually solved

inaccurately by an iterative scheme, especially for large-scale applications. To simplify the subproblem,

inspired by linearized ADMM, we assume ℓ is twice differentiable and notice that the w update

is close to the minimum of a quadratic function given by the Taylor expansion of ℓ at the current

iterate:

w̃k+1 = argminw

{
(w − w̃k)TXT∇ℓ(Xw̃k; b) +

1

2
(w − w̃k)TXT∇2ℓ(Aw̃k; b)X(w − w̃k) +

ρ

2
∥w − z̃k + ũk∥22

}
.

(3.3)

Here ∇2ℓ denotes the Hessian of ℓ. We assume throughout the chapter that ∇2ℓ is psd matrices, this

is a very minor assumption, and is satisfied by all the applications we consider. The solution to this

quadratic minimization may be obtained by solving the linear system

(XT∇2ℓ(Xw̃k; b)X + ρI)w = rk (3.4)

where rk = ρ(z̃k − ũk) + XT∇2ℓ(Xw̃k; b)Xw̃k −XT∇ℓ(Aw̃k; b). (3.5)

The inexact ADMM algorithm we propose solves (3.4) approximately at each iteration.

CHAPTER 3. NYSADMM 59

Algorithm 7 Inexact ADMM

Input: design matrix X, response b, loss function ℓ, regularization r, stepsize ρ, positive summable

sequence {εk}∞k=0

repeat

find w̃k+1 that solves (3.4) within tolerance εk

z̃k+1 = argminz{r(z) + ρ
2∥w̃k+1 − z + ũk∥22}

ũk+1 = ũk + w̃k+1 − z̃k+1

until convergence

Output: solution w⋆ of problem (3.1)

For a quadratic loss ℓ, when
∑∞

k=0 ε
k <∞ and under various other conditions, if optimization

problem (3.1) has an optimal solution, the {w̃k}∞k=0 sequence generated by Algorithm 7 converges to

the optimal solution of (3.1) [48,49]. From [23], quantity rk+1
d = ρ(z̃k − z̃k+1) can be regarded as the

dual residual and rk+1
p = w̃k+1 − z̃k+1 can be viewed as the primal residual at iteration k + 1. This

suggests that we can terminate the ADMM iterations when the primal and dual residuals become

very small. The primal and dual tolerances can be chosen based on an absolute and relative criterion,

such as
∥rkp∥2 ≤ ϵabs + ϵrelmax{∥x̃k∥2, ∥z̃k∥2}
∥rkd∥2 ≤ ϵabs + ϵrel∥ρũk∥2.

The relative criteria ϵrel might be 10−3 or 10−4 in practice. The choice of absolute criteria ϵabs

depends on the scale of the variable values. More details can be found in [23].

3.2.2 Solving the w-subproblem with Nyström PCG

To efficiently solve the linearized w-subproblem in (3.4), we apply the Nyström PCG algorithm

(Algorithm 3) introduced in Chapter 2. Our selection of Nyström PCG is motivated by the fact that

the Hessian matrix in (3.4) has the form:

H = XT∇2ℓ(Xw̃k; b)X

that is, the Hessian is formed from the design matrix X. As most design matrices exhibit fast spectral

decay, we expect the Hessian to enjoy approximate low-rank structure, which makes Nyström PCG a

natural candidate for solving (3.4) efficiently.

3.2.3 NysADMM

Integrating Nyström PCG with inexact ADMM, we obtain NysADMM, presented in Algorithm 8.

CHAPTER 3. NYSADMM 60

Algorithm 8 NysADMM

Input: design matrix X, response b, loss function ℓ, regularization r, stepsize ρ, positive summable

sequence {εk}∞k=0

[U, Λ̂] = RandNyströmApprox(XT∇2ℓ(Xw̃0; b)X, s) {use Algorithm 13}
repeat

use Nyström PCG (Algorithm 3) to find w̃k+1 that solves (3.4) within tolerance εk

z̃k+1 = argminz{r(z) + ρ
2∥w̃k+1 − z + ũk∥22}

ũk+1 = ũk + w̃k+1 − z̃k+1

until convergence

Output: solution w⋆ of problem (3.1)

Our theory for Algorithm 8, shows that if the sketch size s ≳ dρeff, then with high probability

subproblem (3.4) will be solved to ϵ-accuracy in O
(
log(1

ϵ)
)

iterations (Corollary 3.4.2). When

the loss ℓ is quadratic and the sequence of tolerances {εk}∞k=0 is decreasing with
∑∞

k=0 ε
k < ∞,

NysADMM is guaranteed to converge as k →∞ with only a constant number of matvecs per iteration

(Theorem 3.4.3). Table 3.1 compares the complexity of inexact ADMM with CG vs. NysADMM

for K iterations under the hypotheses of Theorem 3.4.3. NysADMM achieves a significant decrease

in runtime over inexact ADMM with CG, as the iteration complexity no longer depends on the

condition number κ2.

Table 3.1: Complexity comparison for a quadratic loss with Hessian H. Here Tmv is the
time to compute a matrix vector product with H, κ(Hρ) is the condition number of κ(Hρ), and εk is
the precision of the kth subproblem solve (3.4).

Method Complexity
Inexact ADMM

with CG
O

(∑K
k=1 Tmv

√
κ(Hρ) log

(
κ(Hρ)

εk

))
NysADMM

O
(
Tmvd

ρ
eff

)
+∑K

k=1 Tmv

(
1 +

⌈
2 log

(√
λ1(Hρ)/ρR

εkρ

)⌉)

3.2.4 AdaNysADMM

Two practical problems remain in realizing the success predicted by the theoretical analysis of Table 3.1.

These bounds are achieved by selecting the sketch size to be dρeff, but the effective dimension is

1) seldom known in practice, and 2) often larger than required to achieve good convergence of

NysADMM. Fortunately, a simple adaptive strategy for choosing the sketch size, inspired by [58],

can achieve the same guarantees as in Table 3.1. This strategy chooses a tolerance ϵ and doubles the

CHAPTER 3. NYSADMM 61

sketch size s until the empirical condition number λ̂s+ρ
ρ satisfies

λ̂s + ρ

ρ
≤ 1 + ϵ. (3.6)

Theorem 3.4.4 guarantees that (3.6) holds when s ≥ dρeff and that when (3.6) holds, the true

condition number is on the order of 1 + ϵ with high probability. We refer to (3.6) as the empirical

condition number as it provides an estimate of the true condition number of the preconditoned

system (Theorem 3.4.4).

Thus, to enjoy the guarantees of Theorem 3.4.4 in practice, we may employ the adaptive version

of NysADMM, which we call AdaNysADMM. We provide the pseudocode for AdaNysADMM in

Algorithm 9 in Section 3.8. Furthermore, as we use a Gaussian test matrix, it is possible to construct a

larger sketch from a smaller one. Hence the total computational work needed by the adaptive strategy

is not much larger than if the effective dimension were known in advance. Indeed, AdaNysADMM

differs from NysADMM only in the construction of the preconditioner. The dominant cost in

forming the precondition is computing the sketch is HΩ, which costs O(Tmvd
ρ
eff). As AdaNysADMM

reuses computation, the dominant complexity for constructing the Nyström preconditioner remains

O(Tmvd
ρ
eff). Consequently, the overall complexity of AdaNysADMM is the same as NysADMM in

Table 3.1.

3.3 Applications

Here we discuss various applications that can be reformulated as instances of (3.1) and solved by

Algorithm 8.

3.3.1 Elastic net

Elastic net generalizes lasso and ridge regression by adding both the l1 and l2 penalty to the least

squares problem:

minimize
1

2
∥Xw − b∥22 +

1

2
(1− γ)∥w∥22 + γ∥w∥1 (3.7)

Parameter γ > 0 interpolates between the l1 and l2 penalties. NysADMM applies with ℓ(Xw; b) =
1
2∥Xw − b∥22, r(w) = 1

2 (1− γ)∥w∥22 + γ∥w∥1. The Hessian matrices for ℓ is are XTX.

3.3.2 Regularized logistic regression

Regularized logistic regression minimizes a logistic loss function together with an l1-regularizer:

minimize −
∑
i

(bi(Xw)i − log(1 + exp((Xw)i))) + γ∥w∥1 (3.8)

CHAPTER 3. NYSADMM 62

NysADMM applies with ℓ(Aw; b) = −∑i (bi(Aw)i − log(1 + exp((Aw)i))) and h(w) = γ∥w∥1. The

inexact ADMM update chooses w̃k+1 to minimize a quadratic approximation of the log-likelihood,

minimize
1

2

∑
i

αk
i (q

k
i − (Ax)i)

2 +
ρ

2
∥x− z̃k + ũk∥22,

where αk
i and qki depend on the current estimate x̃k as

αk
i =

1

2 + exp(−(Xw̃k)i) + exp((Xw̃k)i)

qki =(Xw̃k)i +
bi − 1

1+exp(−(Xw̃k)i)

αk
i

.

Therefore, the solution of the x-subproblem can be approximated by solving the linear system

(XTdiag(αk)X + ρI)w = ρ(z̃k − ũk) +XTdiag(αk)qk.

Here αk and qk are the vectors for αk
i and qki . The Hessian matrix of ℓ is given by XT diag(αk)X.

3.3.3 Support vector machine

To reformulate the SVM problem for solution with NysADMM, consider the dual SVM problem

minimize
1

2
wTdiag(b)Kdiag(b)w − 1Tw

subject to wT b = 0

0 ≤ w ≤ C.

(3.9)

Variable w is the dual variable, b is the label or response, and C is the penalty parameter for

misclassification. For linear SVM, K = XXT where X is the design matrix; and for nonlinear

SVM, K is the corresponding kernel matrix. The SVM problem can be reformulated as (3.1) by

setting ℓ(Kw; b) = 1
2w

T diag(b)Kdiag(b)w−1Tw and taking r to be the indicator function for convex

constraint set wT b = 0, 0 ≤ w ≤ C. The Hessian matrix for ℓ is diag(b)Kdiag(b).

3.4 Convergence analysis

This section provides a convergence analysis for NysADMM. All proofs for the results in this section

may be found in Section 3.7. First we show Nyström PCG can solve any quadratic problem in a

constant number of iterations.

Theorem 3.4.1. Let H be a symmetric positive semidefinite matrix, ρ > 0 and set Hρ =

H + ρI. Suppose we construct the randomized Nyström preconditioner with sketch size s ≥
8
(√

dρeff +
√

8 log(16
δ)
)2

. Then

κ2(P−1/2HρP
−1/2) ≤ 8 (3.10)

CHAPTER 3. NYSADMM 63

with probability at least 1− δ.

Theorem 3.4.1 strengthens Theorem 2.5.1 from Chapter 2, which provides a sharp expectation

bound on the condition number of the preconditioned system, but gives loose high probability bounds

based on Markov’s inequality. Theorem 3.4.1 tightens this bound, showing that Nyström PCG enjoys

an exponentially small failure probability.

As an immediate corollary, we can solve (3.4) with a few iterations of PCG using the Nyström

preconditioner.

Corollary 3.4.2. Instate the hypotheses of Theorem 3.4.1 and let w̃⋆ denote the solution of (3.4).

Then with probability at least 1− δ, the iterates {wt}t≥1 produced by Nyström PCG on problem (3.4)

satisfy

∥wt − w̃⋆∥2
∥w̃⋆∥2

≤
√

κ(Hρ)

(
1

2

)t−1

. (3.11)

Thus, after t ≥ 1 +

⌈
log

(√
κ(Hρ)∥w̃⋆∥2

ϵ

)
log(2)

⌉
iterations,

∥wt − w̃⋆∥2 ≤ ϵ. (3.12)

Corollary 3.4.2 ensures that we can efficiently solve the sub-problem to the necessary accuracy at

each iteration. This result allows us to prove convergence of NysADMM in the case of the quadratic

loss.

Theorem 3.4.3. Consider the problem in (3.1) with quadratic loss ℓ(Xw; b) = 1
2∥Xw − b∥22. Define

initial iterates w̃0, z̃0 and ũ0 ∈ Rd, stepsize ρ > 0, and summable tolerance sequence {εk}∞k=0 ⊂ R+.

Assume at kth ADMM iteration, the norm of the righthand side of the linear system rk is bounded

by constant R for all k. Construct the Nyström preconditioner with sketch size

s ≥ 8

(√
dρeff +

√
8 log

(
16

δ

))2

and solve problem (3.1) with NysADMM, using T k = 1 +

⌈
2 log

(√
λ1(Hρ)/ρR

εkρ

)⌉
. iterations for PCG

at the kth ADMM iteration. Then with probability at least 1− δ,

1. For all k ≥ 0, each iterate x̃k+1 satisfies

∥w̃k+1 − wk+1∥2 ≤ εk, (3.13)

where wk+1 is the exact solution of (3.4).

2. As k →∞, {w̃k}∞k=0 converges to a solution of the primal (3.1) and {ρũk}∞k=0 converges to a

solution of the dual problem of (3.1).

CHAPTER 3. NYSADMM 64

Theorem 3.4.3 establishes convergence of NysADMM for a quadratic loss. The quadratic loss

already covers many applications of interest including the lasso, elastic-net, and SVMs. Convergence

for general convex losses is established in the follow-up work [59] by the current author along with

collaborators. [59] goes beyond merely establishing convergence, it also proves explicit convergence

rates for NysADMM and other approximate ADMM schemes under standard regularity assumptions.

The next result makes rigorous the claims made in Section 3.2.4: it shows we can determine

whether or not we have reached the effective dimension by monitoring the empirical condition number

(λ̂s + ρ)/ρ.

Theorem 3.4.4. Suppose, for some user defined tolerance ϵ > 0, the sketch size satisfies

s ≥ 8

(√
d
ϵρ/6
eff +

√
8 log

(
16

δ

))2

.

Then the empirical condition number of the Nyström preconditioned system P−1/2HrP
−1/2 satisfies

λ̂s + ρ

ρ
≤ 1 +

ϵ

42
. (3.14)

Furthermore, with probability at least 1− δ,∣∣∣∣∣κ2(P−1/2HρP
−1/2)− λ̂s + ρ

ρ

∣∣∣∣∣ ≤ ϵ. (3.15)

Theorem 3.4.4 shows that once the empirical condition number is sufficiently close to 1, so too

is the condition number of the preconditioned system. Hence it is possible to reach the effective

dimension by doubling the sketch size of the Nyström approximation until the empirical condition

number falls below the desired tolerance. Theorem 3.4.4 ensures the true condition number is close

to this empirical estimate with high probability.

Theorem 3.4.4 also helps explain why sketch sizes much smaller than the effective dimension can

succeed in practice. The point is best illustrated by instantiating an explicit parameter selection in

Theorem 3.4.4, which yields the following corollary.

Corollary 3.4.5. Instate the hypotheses of Theorem 3.4.4 with ϵ = 100. Then with a sketch size of

s ≳ d16ρeff the following holds

1. (λ̂s + ρ)/ρ ≤ 1 + 100
42 .

2. With probability at least 1− δ,∣∣∣∣κ2(P−1/2HρP
−1/2)− 1− 100

42

∣∣∣∣ ≤ 100.

CHAPTER 3. NYSADMM 65

Corollary 3.4.5 shows that for a coarse tolerance of ϵ = 100, a sketch size of s ≳ d16ρeff suffices

to ensure that the condition number of P−1/2HρP
−1/2 is no more than around 100. Two practical

observations cement the importance of this corollary. First, d16ρeff is often significantly smaller than

dρeff, possibly by an order of magnitude or more. Second, with a condition number around 100, PCG

is likely to converge very quickly. In fact, for modest condition numbers, PCG is known to converge

much faster in practice than the theory would suggest [161]. It is only when the condition number

reaches around 103, that convergence starts to slow. Thus, Corollary 3.4.5 helps explain why it is

not necessary for the sketch size to equal the effective dimension in order for NysADMM to obtain

significant accelerations.

3.5 Numerical experiments

Table 3.2: Statistics of experiment datasets.

Name instances n features d nonzero %

STL-10 13000 27648 96.3
CIFAR-10 60000 3073 99.7
CIFAR-10-rf 60000 60000 100.0
smallNorb-rf 24300 30000 100.0
E2006.train 16087 150348 0.8
sector 6412 55197 0.3
p53-rf 16592 20000 100.0
connect-4-rf 16087 30000 100.0
realsim-rf 72309 50000 100.0
rcv1-rf 20242 30000 100.0
cod-rna-rf 59535 60000 100.0

In this section, we evaluate the performance of NysADMM on different large-scale applications:

lasso, ℓ1-regularized logistic regression, and SVM. For each type of problems, we compare NysADMM

with popular standard solvers. We run all experiments on a server with 128 Intel Xeon E7-4850 v4

2.10GHz CPU cores and 1056GB. We repeat every numerical experiment ten times and report the

mean solution time. We highlight the best-performing method in bold. The tolerance of NysADMM

at each iteration is chosen as the geometric mean εk+1 =
√

rkpr
k
d of the ADMM primal residual rp

and dual residual rd at the previous iteration, as in [155]. See [23] for more motivation and details.

An alternative is to choose the tolerance sequence as any decaying sequence with respect to the

righthand side norm as the number of NysADMM iteration increases, e.g., εk = ∥rk∥2/kβ , where β

is a predefined factor. These two strategies perform similarly; our experiments use the first strategy.

We choose a sketch size s = 50 to compute the Nyström approximation throughout our experiments.

Inspired by Theorem 3.4.4 and Corollary 3.4.5, even if the sketch size is much smaller than the

effective dimension, NysADMM can still achieve significant acceleration in practice.

CHAPTER 3. NYSADMM 66

To support experiments with standard solvers, for each problem class we use the same stopping

criterion and other parameter settings as the standard solver. These experiments use datasets

with n > 10, 000 or d > 10, 000 from LIBSVM [29], UCI [45], and OpenML [166], with statistics

summarized in Table 3.2. We use a random feature map [137,139] to generate features for the data

sets CIFAR-10, smallnorb, realsim, rcv1, and cod-rna, which increases both predictive performance

and problem dimension.

3.5.1 Lasso

This subsection demonstrates the performance of NysADMM to solve the standard lasso problem

(3.2). Here we compare NysADMM with three standard lasso solvers, SSNAL [103], mfIPM [55],

and glmnet [60]. SSNAL is a Newton method based solver; mfIPM is an interior point method

based solver and glmnet is a coordinate descent based solver. In practice, these three solvers and

NysADMM rely on different stopping criteria. In order to make a fair comparison, in our experiments,

the accuracy of a solution w for (3.2) is measured by the following relative Karush–Kuhn–Tucker

(KKT) residual [103]:

η =
∥w − proxγ∥·∥1

(w −XT (Xw − b))∥
1 + ∥w∥+ ∥Xw − b∥ . (3.16)

For a given tolerance ϵ, we stop the tested algorithms when η < ϵ. Note that stopping criterion (3.16)

is rather strong: if η ≤ 10−2 for NysADMM, then the primal and dual gaps for ADMM are ≲ 10−4,

which suffices for most applications. Indeed, for many machine learning problems, lower bounds on

the statistical performance of the estimator [105] imply an unavoidable level of statistical error that

is greater than this optimization error for most applications. Optimizing the objective beyond the

level of statistical error [1, 106] does not improve generalization. For standard lasso experiments, we

fix the regularization parameter at γ = 1.

Table 3.3: Results for low precision lasso experiment.

Task
Time for ϵ = 10−1 (s)

NysADMM mfIPM SSNAL glmnet

STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 – 765 292
rcv1-rf 226 563 595 273
cod-rna-rf 208 976 865 324

Table 3.3 and Table 3.4 show results for lasso experiments. The average solution time for

NysADMM, mfIPM, SSNAL, and glmnet with ϵ = 10−1, 10−2 on different tasks are provided. Here

CHAPTER 3. NYSADMM 67

Table 3.4: Results for high precision lasso experiment.

Task
Time for ϵ = 10−2 (s)

NysADMM mfIPM SSNAL glmnet

STL-10 406 812 656 831
CIFAR-10-rf 715 1317 1126 1169
smallNorb-rf 596 896 768 732
E2006.train 1657 1965 1446 2135
sector 957 1066 875 1124
realsim-rf 732 – 1035 922
rcv1-rf 593 853 715 736
cod-rna-rf 715 1409 1167 997

mfIPM fails to solve the realsim-rf instance since it requires n < d. For precision of ϵ = 10−1,

NysADMM is faster than all other solvers and at least 3 times faster than both mfIPM and SSNAL.

For precision of ϵ = 10−2, NysADMM is still faster than all other solvers for all instances except

E2006.train and sector. The results are fair since both SSNAL and mfIPM are second-order solvers

and can reach high precision. NysADMM and glmnet are first-order solvers; they reach low precision

quickly, but improve accuracy more slowly than a second order method. In practice, for large-scale

machine learning problems, a low precision solution usually suffices, as decreasing optimization error

beyond the statistical noise in the problem does not improve generalization. Further, our algorithm

achieves bigger improvements on dense datasets compared with sparse datasets, as the factors of the

Nyström approximation are dense even for sparse problems. To further illustrate the results, we vary

Figure 3.1: Solution times for varying tolerance ϵ on STL-10.

the value of ϵ from 1.0 to 10−3 on STL-10 task and plot the average solution time for four methods

in Figure 3.1. We can see NysADMM is as least as fast as other solvers when ϵ > 10−3, and often

CHAPTER 3. NYSADMM 68

twice as fast for many practical values of ϵ.

3.5.2 l1-Regularized logistic regression

This subsection demonstrates the performance of NysADMM on l1-regularized logistic regression,

(3.8) from Section 3.3.2. We test the method on binary classification problems using the same random

feature map as in Section 3.5.1.

The l1-regularized logistic regression experiments compare NysADMM with the SAGA algorithm,

a stochastic average gradient like algorithm [38] implemented in sklearn, and the accelerated proximal

gradient (APG) algorithm [16, 123, 127]. For the purpose of fair comparison, all the algorithms

are stopped when the maximum relative change in the problem variable (that is, the regression

coefficients) ∥wk−wk+1∥∞
∥wk∥∞

is less than the tolerance. The tolerance is set to 10−3; other settings match

the default settings of the sklearn logistic regression solver.

An overview of l1-regularized logistic regression experiment results are provided in Table 3.5.

NysADMM uniformly out performs SAGA, solving each problem at least twice as fast. Similarly,

NysADMM is at least twice as fast as APG on all datasets except STL-10, where it performs

comparably. In the cases of p53-rf and connect-4-rf, NysADMM runs significantly faster than its

competitors, being four times faster than SAGA and three times faster than APG. These large

performance gains are due to the size of the problem instances and their conditioning. From [38], the

convergence speed of SAGA depends on the problem instance size and condition number. Our test

cases have large instance sizes and condition numbers, which lead to slow convergence of SAGA. The

situation with APG is similar. Indeed, although ADMM and proximal gradient methods generally

have the same O(1/t)-convergence rate [16, 79], NysADMM is less sensitive ill-conditioning than

APG.

Table 3.5: Results for l1-regularized logistic regression experiment.

Task NysADMM (s) SAGA (s) APG (s)

STL-10 3012 6083 2635
CIFAR-10-rf 7884 21256 17292
p53-rf 528 2116 1880
connect-4-rf 866 4781 7365
smallnorb-rf 1808 6381 4408
rcv1-rf 1237 3988 2759
con-rna-rf 7528 21513 16361

3.5.3 Support vector machine

This subsection demonstrates the performance of NysADMM on kernel SVM problem for binary

classification, (3.9) from Section 3.3.3. The SVM experiments compare NysADMM with the LIBSVM

CHAPTER 3. NYSADMM 69

solver [29]. LIBSVM uses sequential minimal optimization (SMO) to solve the dual SVM problem.

We use the same stopping criteria as the LIBSVM solver, which stops the NysADMM method when

the ADMM dual gap reaches 10−4 level. All SVM experiments use the RBF kernel. Table 3.6 shows

Table 3.6: Results of SVM experiment.

Task NysADMM time (s) LIBSVM time (s)

STL-10 208 11573
CIFAR-10 1636 8563
p53-rf 291 919
connect-4-rf 7073 42762
realsim-rf 17045 52397
rcv1-rf 564 32848
cod-rna-rf 4942 36791

the results of SVM experiments. On these problems, NysADMM is at least 3 times faster (and up

to 58 times faster) than the LIBSVM solver. Consider problem formulation (3.9), with the RBF

kernel. The Gram matrix diag(b)Kdiag(b) is dense and approximately low rank: exactly the setting

in which NysADMM should be expected to perform well. In constrast, the SMO-type decomposition

in LIBSVM solver works better for sparse problems, as it updates only two variables at each iteration.

3.6 Conclusion

In this thesis chapter, we have developed a scalable new algorithm, NysADMM, that combines

inexact ADMM and the randomized low-rank Nyström approximation to accelerate composite convex

optimization. We show that NysADMM exhibits strong benefits both in theory and in practice.

Our theory shows that when the Nyström preconditioner is constructed with an appropriate rank,

NysADMM requires only a constant number of matvecs to solve the ADMM subproblem. We have

also provided an adaptive strategy for selecting the rank that possesses a similar computational

profile to the non-adaptive algorithm, and allows us to realize the theoretical benefits in practice.

Further, numerical results demonstrate that NysADMM is as least twice as fast as standard methods

on large dense lasso, regularized logistic regression, and kernalized SVM problems. More broadly,

this chapter shows the promise of recent advances in RandNLA to provide practical accelerations for

important large-scale optimization algorithms.

3.7 Proofs not appearing in the main chapter

In this section we give the proofs for the main results of the chapter: Theorem 3.4.1, Theorem 3.4.3,

and Theorem 3.4.4.

CHAPTER 3. NYSADMM 70

3.7.1 Preliminaries

We start by recalling some useful background information and technical results that are useful

for proving the main theorems. In order to obtain the exponentially small failure probabilities in

Theorem 3.4.1 and Theorem 3.4.4 we take a different approach from the one in Chapter 2, which was

based off of Markov’s inequality. The proofs here are based on regularized Schur complements and

approximate matrix multiplication. Our arguments are inspired by the techniques used to establish

statistical guarantees for approximate kernel ridge regression via column sampling schemes [3, 13].

Regularized Nyström approximation: Properties

We start by recalling some important properties of the Nyström approximation and its regularized

variant. Recall that Ω ∈ Rd×s denotes the test matrix from which we construct the Nyström

approximation. Given σ > 0, the regularized Nyström approximation with respect to Ω is defined as

H⟨Ω⟩σ = (HΩ)(ΩTHΩ + σI)−1(HΩ)T . (3.17)

Furthermore, let H = V ΛV T be the eigendecomposition of H and define Dσ = H(H + σI)−1 =

Λ(Λ + σI)−1. We shall see below that Dσ plays a crucial role in the analysis. The following lemma

summarizes the properties of the regularized Nyström approximation.

Lemma 3.7.1 (Lemma 3.7.2 [3]). Let H be a symmetric psd matrix, σ > 0. Define E = H −H⟨Ω⟩
and Eσ = H −H⟨Ω⟩σ. Then the following hold.

1. H⟨Ω⟩σ ⪯ H⟨Ω⟩ ⪯ H.

2. 0 ⪯ E ⪯ Eσ.

3. If ∥D1/2
σ V T (1

sΩΩT)V D
1/2
σ −Dσ∥ ≤ η < 1, then

0 ⪯ Eσ ⪯
σ

1− η
I. (3.18)

Lemma 3.7.1 relates H⟨Ω⟩σ to H⟨Ω⟩ and H. In particular, item 2 implies that ∥E∥ ≤ ∥Eσ∥, so

controlling Eσ controls E. Item 3 shows that Eσ can be controlled by the spectral norm of the matrix

D1/2
σ V T 1

s
ΩΩTV D1/2

σ −Dσ. (3.19)

CHAPTER 3. NYSADMM 71

The spectral norm of (3.19) can be bounded by observing

E
[
D1/2

σ V T 1

s
ΩΩTV D1/2

σ

]
= (3.20)

D1/2
σ V TE

[
1

s
ΩΩT

]
V D1/2

σ = (3.21)

D1/2
σ V TV D1/2

σ = Dσ. (3.22)

Thus, D
1/2
σ V T 1

sΩΩTV D
1/2
σ is an unbiased estimator of Dσ, and may be viewed as approximating

the product of the matrices D
1/2
σ V T and V D

1/2
σ . Hence results from randomized linear algebra can

bound the spectral norm of this difference. In particular, it suffices to take a sketch size that scales

with the effective dimension, using results on approximate matrix multiplication in terms of stable

rank [36].

Approximate matrix multiplication in terms of the effective dimension

The condition in item 3 of Lemma 3.7.1 follows immediately from theorem 1 of [36]. Unfortunately,

the analysis in that paper does not yield explicit constants. Instead we use a special case of their

results due to [97] that provides explicit constants. Theorem 3.7.2 simplifies Theorem 5.2 in [97].

Theorem 3.7.2 (Simplified Theorem 5.2 [97]). Let Ψ ∈ Rs×d be a matrix with i.i.d. N(0, 1
s) entries.

Given δ > 0, and τ ∈ (0, 1) it holds with probability at least 1− δ that

sup
v∈Sd−1

⟨v, (D1/2
σ V T ΨT ΨV D1/2

σ −Dσ)v⟩ ≤ τ + 2
√
τ , (3.23)

inf
v∈Sd−1

⟨v, (D1/2
σ V T ΨT ΨV D1/2

σ −Dσ)v⟩ ≥ τ − 2
√
τ , (3.24)

provided s ≥
(√

dσ
eff+
√

8 log(16/δ)
)2

τ .

Setting Ψ = 1√
s
ΩT , where Ω ∈ Rd×s has i.i.d. N(0, 1) entries, Theorem 3.7.2 yields the following

corollary.

Corollary 3.7.3. Let Ω ∈ Rd×s be a matrix with i.i.d. N(0, 1) entries. Given δ > 0, and τ ∈ (0, 1)

it holds with probability at least 1− δ that∥∥∥∥D1/2
σ V T 1

s
ΩΩTV D1/2

σ −Dσ

∥∥∥∥ ≤ τ + 2
√
τ (3.25)

provided s ≥
(√

dσ
eff+
√

8 log(16/δ)
)2

τ .

CHAPTER 3. NYSADMM 72

3.7.2 Proofs of Theorem 3.4.1 and Corollary 3.4.2

We start by establishing the following lemma, from which Theorem 3.4.1 follows easily.

Lemma 3.7.4. Let ϵ > 0 and E = H −H⟨Ω⟩. Suppose we construct a randomized Nyström approxi-

mation from a standard Gaussian random matrix Ω with sketch size s ≥ 8
(√

dϵeff +
√

8 log(16
δ)
)2

.

Then the event

E = {∥E∥ ≤ 6ϵ}, (3.26)

holds with probability at least 1− δ.

Proof. Let Ωs = 1√
s
Ω and observe that H⟨Ωs⟩ = H⟨Ω⟩. Now the conditions of Corollary 3.7.3 are

satisfied with σ = ϵ and τ = 1/8. Consequently with probability at least 1− δ,∥∥∥∥D1/2
ϵ V T 1

s
ΩΩTV D1/2

ϵ −Dϵ

∥∥∥∥ ≤ 1

8
+

√
2

2
.

Hence applying Lemma 3.7.1 with σ = ϵ and η = 1
8 +

√
2
2 , we obtain∥∥∥∥H −H⟨Ωs⟩ϵ

∥∥∥∥ ≤ 6ϵ,

with probability at least 1− δ. Recalling our initial observation, we conclude the desired result.

Proof of Theorem 3.4.1

Proof. As s ≥ 8
(√

dρeff +
√

8 log(16
δ)
)2

we have that ∥E∥ ≤ 6ρ with probability at least 1 − δ by

Lemma 3.7.4. Furthermore, λ̂s ≤ ρ
7 by item 3 of Lemma 2.2.1 and Lemma 2.5.4 with γ = 1/7.

Combining this with Proposition 2.5.3, we conclude with probability at least 1− δ,

κ2(P−1/2HρP
−1/2) ≤ λ̂s + ρ + ∥E∥

ρ

≤ 1 + 6 +
1

7
≤ 8

as desired.

Proof of Corollary 3.4.2

Proof. Let A = P−1/2HρP
−1/2 and condition on the event that κ2(A) ≤ 8, which holds with proba-

bility at least 1− δ. Then the same argument used in Section 2.8.7 used to establish Corollary 2.5.2

guarantees after t iterations that,

∥wt − w̃⋆∥Hρ

∥w̃⋆∥Hρ

≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)t

(3.27)

CHAPTER 3. NYSADMM 73

Theorem 3.4.1 guarantees that the Nyström preconditioned matrix satisfies κ2(A) ≤ 8, so the above

display may be majorized as
∥wt − w̃⋆∥Hρ

∥w̃⋆∥Hρ

≤
(

1

2

)t−1

. (3.28)

Now, from the elementary inequality√
λd(Hρ)∥w∥2 ≤ ∥w∥Hρ

≤
√

λ1(Hρ)∥w∥Hρ
, (3.29)

we conclude
∥wt − w̃⋆∥2
∥w̃⋆∥2

≤
√

κ2(Hρ)

(
1

2

)t−1

. (3.30)

The claimed result now follows from an elementary computation.

3.7.3 Proof of Theorem 3.4.3

This proof is a natural consequence of the following theorem from [48].

Theorem 3.7.5. Consider a convex optimization problem in the primal form (P),

minimize f(w) + r(Mw),

where w ∈ Rd, M ∈ Rm×d has full column rank. Pick any y0, z0 ∈ Rm, and ρ > 0, and summable

sequences

{εk}∞k=0 ⊆ [0,∞),

∞∑
k=0

εk <∞,

{νk}∞k=0 ⊆ [0,∞),

∞∑
k=0

νk <∞,

{λk}∞k=0 ⊆ (0, 2), 0 < inf λk ≤ supλk < 2.

The dual problem (D) of primal problem (P) is

maximizey∈Rm − (f∗(−MT y) + g∗(y)).

Suppose the primal and dual ADMM iterates {wk}∞k=0, {zk}∞k=0, and {yk}∞k=0 satisfy the update

CHAPTER 3. NYSADMM 74

equations to within errors given by conform, for all k to∥∥∥∥wk+1 − argminw

{
f(w) + ⟨yk,Mw⟩

+
ρ

2
∥Mw − zk∥22

}∥∥∥∥
2

≤ εk,∥∥∥∥zk+1 − argminz

{
r(z)− ⟨yk, z⟩

+
ρ

2
∥λkMwk+1 − z + (1− λk)zk∥22

}∥∥∥∥
2

≤ νk,

yk+1 = yk + ρ(λkMwk+1 + (1− λk)zk − zk+1).

(3.31)

Then if (P) has a Kuhn-Tucker pair, {wk} converges to a solution of (P) and {yk} converges to a

solution of (D).

Proof of Theorem 3.4.3

Proof. Consider optimization problem (3.1) and the associated NysADMM algorithm Algorithm 8.

Suppose {w̃k}∞k=0, {z̃k}∞k=0, and {ũk}∞k=0 are generated by NysADMM iterations. Since ℓ(Xw, b) is

quadratic with respect to w, the x-subproblem of (3.1) is exactly the linear system (3.4).

Let wk+1 be the exact solution for the w-subproblem at iteration k. For all k ≥ 0, NysADMM

iterate w̃k+1 satisfies ∥w̃k+1 − wk+1∥2 ≤ εk. Let M = I, νk = 0, λk = 1, yk = ρũk for all k,

and f(w) = ℓ(Xw; b). By Theorem 3.7.5, {w̃k}∞k=0, {z̃k}∞k=0, and {ρũk}∞k=0 satisfy condition (3.31).

Therefore, if the optimization problem (3.1) has a Kuhn-Tucker pair, {w̃k} converges to a solution of

(3.1) and {ρũk} converges to a solution of the dual problem of (3.1).

Next, we derive the bound for the number of Nyström PCG iterations T k required at NysADMM

iteration k. As the Hessian of ℓ(Xw; b) is constant, we only need to compute the preconditioner

for constant linear system matrix Hρ = XTX + ρI. The resulting preconditioner can then be used

for all NysADMM iterations. Since the Nyström preconditioner is constructed with sketch size

s ≥ 8
(√

dρeff +
√

8 log(16
δ)
)2

, by Corollary 3.4.2, with probability at least 1− δ, after

T k ≥ 1 +

⌈ log

(√
λ1(Hρ)/ρ∥w̃k+1∥2

εk

)
log(2)

⌉
Nyström PCG iterations, we have ∥w̃k+1 − wk+1∥2 ≤ εk. Recall the right-hand side of linear system

(3.4) rk. The exact solution for the x-subproblem wk+1 at iteration k satisfies ∥wk+1∥2 ≤ ∥rk∥2

ρ . We

have ⌈ log

(√
λ1(Hρ)/ρ∥w̃k+1∥2

εk

)
log(2)

⌉
≤
⌈ log

(√
λ1(Hρ)/ρ∥rk∥2

εkρ

)
log(2)

⌉
.

CHAPTER 3. NYSADMM 75

Further, by assumption, as ∥rk∥2 is bounded by a constant R for all k, we have
log

(√
λ1(Hρ)/ρ

εkρ

)
log(2)

 ≤


log

(√
λ1(Hρ)/ρR

εkρ

)
log(2)

 ≤
⌈

2 log

(√
λ1(Hρ)/ρR

εkρ

)⌉
.

This gives the bound for the number of PCG iterations T k required at NysADMM iteration k

3.7.4 Proof of Theorem 3.4.4

Proof. By hypothesis we have s > d
ϵρ/6
eff , so Lemma 2.5.4 with γ = 7 yields

λ̂s ≤ λs ≤
1

7

ϵρ

6
=

ϵρ

42
,

Thus,

λ̂s + ρ

ρ
≤ 1 +

ϵ

42
.

This gives the first statement. For the second statement we use our hypothesis on s to apply

Lemma 3.7.4 with tolerance ϵρ/6. From this we conclude ∥E∥ ≤ ϵρ with probability at least 1− δ.

Combining this with Proposition 2.5.3 yields

κ2(P−1/2HρP
−1/2)− λ̂s + ρ

ρ
≤ ϵ,

with probability at least 1− δ. On the other hand, condition numbers always satisfy

κ2(P−1/2HρP
−1/2) ≥ 1.

Combining this with our upper bound on λ̂s gives

κ2(P−1/2HρP
−1/2)− λ̂s + ρ

ρ
≥ 1− (1 + ϵ/42)

= −ϵ/42.

Hence with probability at least 1− δ∣∣∣∣κ2(P−1/2HρP
−1/2)− λ̂s + ρ

ρ

∣∣∣∣ ≤ ϵ.

CHAPTER 3. NYSADMM 76

3.8 AdaNysADMM Algorithm

In this section we give the pseudocode for AdaNysADMM

Algorithm 9 AdaNysADMM

Input: design matrix X, response b, loss function ℓ, regularization r, stepsize ρ, positive summable

sequence {εk}∞k=0

[U, Λ̂] = AdaptiveRandNysAppx(XT∇2ℓ(Aw̃k; b)X, s) {use Algorithm 5}
repeat

find w̃k+1 that solves (3.4) within tolerance εk by Nyström PCG

z̃k+1 = argminz{r(z) + ρ
2∥w̃k+1 − z + ũk∥22}

ũk+1 = ũk + w̃k+1 − z̃k+1

until convergence

Chapter 4

SketchySGD

4.1 Introduction

Modern large-scale machine learning requires stochastic optimization: evaluating the full objective or

gradient even once is too slow to be useful. Instead, stochastic gradient descent (SGD) and variants

are the methods of choice [4,37,86,117,143]. However, stochastic optimizers sacrifice stability for their

improved speed. Parameters like the learning rate are difficult to choose and important to get right,

with slow convergence or divergence looming on either side of the best parameter choice [121]. Worse,

most large-scale machine learning problems are ill-conditioned: typical condition numbers among

standard test datasets range from 104 to 108 (see Table 4.2) or even larger, resulting in painfully

slow convergence even given the optimal learning rate. This thesis chapter introduces a method,

SketchySGD, that uses a principled theory to address ill-conditioning and yields a theoretically

motivated learning rate that robustly works for modern machine learning problems. Figure 4.1

depicts the performance of stochastic optimizers using learning rates tuned for each optimizer on a

ridge regression problem with the E2006-tfidf dataset (see Section 4.5). SketchySGD improves the

objective substantially, while the other stochastic optimization methods (SGD, SVRG, SAGA, and

Katyusha) do not.

Second-order optimizers based on the Hessian, such as Newton’s method and quasi-Newton

methods, are the classic remedy for ill-conditioning. These methods converge at super-linear rates

under mild assumptions and are faster than first-order methods both in theory and in practice [24,125].

Alas, it has proved difficult to design second-order methods that can use stochastic gradients. This

deficiency limits their use in large-scale machine learning. Stochastic second-order methods using

stochastic Hessian approximations but full gradients are abundant in the literature [98, 132, 160].

However, a practical second-order stochastic optimizer must replace both the Hessian and gradient

by stochastic approximations. While many interesting ideas have been proposed, existing methods

require impractical conditions for convergence: for example, a batch size for the gradient and Hessian

77

CHAPTER 4. SKETCHYSGD 78

0 2 4 6 8
Wall-clock time (s)

1.4

2.2

T
ra

in
in

g
L

os
s

×10−1 e2006

SGD

SVRG

SAGA

L-Katyusha

SketchySGD (Ours)

Figure 4.1: SketchySGD outperforms standard stochastic gradient optimizers, even when their
parameters are tuned for optimal performance. Each optimizer was allowed 40 full data passes.

that grows with the condition number [146], or that increases geometrically at each iteration [20].

These theoretical conditions are impossible to implement in practice. Convergence results without

extremely large or growing batch sizes have been established under interpolation, i.e., if the loss

is zero at the solution [113]. This setting is interesting for deep learning, but is unrealistic for

convex machine learning models. Moreover, most of these methods lack practical guidelines for

hyperparameter selection, making them difficult to deploy in real-world machine learning pipelines.

Altogether, the literature does not present any stochastic second-order method that can function

as a drop-in replacement for SGD, despite strong empirical evidence that — for perfectly chosen

parameters — they yield improved performance. One major contribution of this chapter is a theory

that matches how these methods are used in practice, and therefore is able to offer practical parameter

selection rules that make SketchySGD (and even some previously proposed methods) practical. We

provide a more detailed discussion of how SketchySGD compares to prior stochastic second-order

optimizers in Section 4.3.

SketchySGD accesses second-order information using only minibatch Hessian-vector products to

form a sketch, and produces a preconditioner for SGD using the sketch, which is updated only rarely

(every epoch or two). This primitive is compatible with standard practices of modern large-scale

machine learning, as it can be computed by automatic differentiation. Our major contribution is

a tighter theory that enables practical choices of parameters that makes SketchySGD a drop-in

replacement for SGD and variants that works out-of-the-box, without tuning, across a wide variety

of problem instances.

How? A standard theoretical argument in convex optimization shows that the learning rate

in a gradient method should be set as the inverse of the smoothness parameter of the objective

CHAPTER 4. SKETCHYSGD 79

Algorithm 10 SketchySGD (Practical version)

Input: initialization w0, hvp oracle OH , ranks {rj}, regularization ρ, preconditioner update
frequency u, stochastic gradient batch size bg, stochastic Hessian batch sizes {bhj}
for k = 0, 1, . . . ,m− 1 do

Sample a batch Bk

Compute stochastic gradient gBk
(wk)

if k ≡ 0 (mod u) then {Update preconditioner}
Set j = j + 1
Sample a batch Sj {|Sj | = bhj}
Φ = randn(p, rj) {Gaussian test matrix}
Q = qr econ (Φ)
Compute sketch Y = HSj

(wk)Q {r calls to OHSj
}

[V̂ , Λ̂] = RandNysApprox(Y,Q, rj)

ηj = get learning rate(OHSj
, V̂ , Λ̂, ρ)

end if
Compute vk = (ĤSj

+ ρI)−1gBk
(wk) via (4.5)

wk+1 = wk − ηjvk {Update parameters}
end for

to guarantee convergence [24, 124]. This choice generally results in a tiny stepsize and very slow

convergence. However, in the context of SketchySGD, the preconditioned smoothness constant is

generally around 1, and so its inverse provides a reasonable learning rate. Moreover, it is easy

to estimate, again using minibatch Hessian-vector products to measure the largest eigenvalue of a

preconditioned minibatch Hessian.

Theoretically, we establish SketchySGD converges to a small ball around the minimum on for

both smooth convex functions and smooth and strongly convex functions, which suffices for good

test error [1, 78, 105]. By appealing to the modern theory of SGD for finite-sum optimization [72] in

our analysis, we avoid vacuous or increasing batchsize requirements for the gradient. As a corollary

of our theory, we obtain that SketchySGD converges linearly to the optimum whenever the model

interpolates the data, recovering the result of [113]. In addition, when the objective is quadratic, we

show that the number of iterations SketchySGD requires to reach an ϵ-suboptimal solution improves

upon that of SGD.

Numerical experiments verify that SketchySGD yields comparable or superior performance to

SGD, SAGA, SVRG, stochastic L-BFGS [116], and loopless Katyusha [94] equipped with tuned hy-

perparameters that attain their best performance. Experiments also demonstrate that SketchySGD’s

default hyperparameters, including the rank of the preconditioner and the frequency at which it is

updated, work well across a wide range of datasets.

4.1.1 SketchySGD

CHAPTER 4. SKETCHYSGD 80

SketchySGD finds w ∈ Rp to minimize the (possibly non-convex) empirical risk

minimize f(w) :=
1

n

n∑
i=1

fi(w), (4.1)

given access to a gradient oracle for each fi. SketchySGD is formally presented as Algorithm 12.

SketchySGD tracks two different sets of indices: k, which counts the number of total iterations, and

j, which counts the number of (less frequent) preconditioner updates. SketchySGD updates the

preconditioner (every u iterations) by sampling a minibatch Sj and forming a low-rank ĤSj using

Hessian vector products with the minibatch Hessian HSj evaluated at the current iterate wk. Given

the Hessian approximation, it uses ĤSj
+ ρI as a preconditioner, where ρ > 0 is a regularization

parameter. Subsequent iterates are then computed as

wk+1 = wk − ηj(ĤSj
+ ρI)−1gBk

(wk), (4.2)

where gBk
(wk) is the minibatch stochastic gradient and ηj is the learning rate, which is automatically

determined by the algorithm.

The SketchySGD update may be interpreted as a preconditioned stochastic gradient step with

Levenberg-Marquardt regularization [101,108]. Indeed, let Pj = ĤSj + ρI and define the precondi-

tioned function fPj
(z) = f(P

−1/2
j z), which represents f as a function of the preconditioned variable

z ∈ Rp. Then (4.2) is equivalent to 1

zk+1 = zk − ηj ĝPj
(zk), wk+1 = P

−1/2
j zk,

where ĝPj (zk) is the minibatch stochastic gradient as a function of z. Thus, SketchySGD first takes

a step of SGD in preconditioned space and then maps back to the original space. As preconditioning

induces more favorable geometry, SketchySGD chooses better search directions and uses a stepsize

adapted to the (more isotropic) preconditioned curvature. Hence SketchySGD makes more progress

than SGD to ultimately converge faster.

Contributions

1. We develop a new stochastic second-order method that is fast and generalizes well by accessing

only a subsampled Hessian and stochastic gradient.

2. We devise an heuristic (but well-motivated) automated learning rate for this algorithm that

works well in both ridge and logistic regression. More broadly, we present default settings for

all hyperparameters of SketchySGD, which allow it to work out-of-the-box.

1See Section 4.8.1 for a proof.

CHAPTER 4. SKETCHYSGD 81

3. We show that SketchySGD with a fixed learning rate converges to a small ball about the

minimum for smooth and convex, and smooth and strongly convex objectives. Additionally,

we show SketchySGD converges at a faster rate than SGD for ill-conditioned least-squares

problems. We verify this improved convergence in numerical experiments.

4. We present experiments showing that SketchySGD with its default hyperparameters can match

or outperform popular stochastic first- and second-order methods and randomized least-squares

solvers on ridge and logistic regression problems.

5. We present proof-of-concept experiments on tabular deep learning, which show

SketchySGD scales well and is competitive with other stochastic second-order optimizers in

deep learning, potentially providing an avenue for interesting future research.

4.1.2 Roadmap

Section 4.2 describes the SketchySGD algorithm in detail, explaining how to compute ĤSk
and the

update in (4.2) efficiently. Section 4.3 surveys previous work on stochastic second-order methods,

particularly in the context of machine learning. Section 4.4 establishes convergence of SketchySGD

in convex machine learning problems. Section 4.5 provides numerical experiments showing the

superiority of SketchySGD relative to competing optimizers.

4.1.3 Notation

Throughout the chapter Bk and Sj denote subsets of {1, . . . , n} that are sampled independently and

uniformly without replacement. The corresponding stochastic gradient and minibatch Hessian are

given by

gBk
(w) =

1

bgk

∑
i∈Bk

gi(w), HSj
(w) =

1

bhj

∑
i∈Sj

∇2fi(w),

where bgk = |Bk|, bhj
= |Sj |. For shorthand, we often omit the dependence upon w and simply

write gBk
and HSj

. We also define H(w) as the Hessian of the objective f at w. Given w ∈ Rp, we

define M(w) = max1≤i≤n ∥∇2fi(w)∥ and G(w) = max1≤i≤n ∥∇fi(w)∥. Given any β > 0, we use the

notation Hβ
Sj

to denote HSj + βI. We abbreviate positive-semidefinite as psd, and positive-definite

as pd. We say f is L-smooth if H(w) ⪯ LI for all w ∈ Rp. We say f is µ-strongly convex if

µI ⪯ H(w) for all w ∈ Rp. For L-smooth and µ-strongly convex f , we define the condition number

κ := L/µ. We denote the Loewner order on the convex cone of psd matrices by ⪯, where A ⪯ B

means B − A is psd. Given a psd matrix A ∈ Rp×p, we enumerate its eigenvalues in descending

order, λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A). Throughout the chapter ∥ · ∥ stands for the usual 2-norm for

vectors and operator norm for matrices. For any matrix A ∈ Rp×p and u, v ∈ Rp, ∥v∥2A := vTAv,

CHAPTER 4. SKETCHYSGD 82

and ⟨u, v⟩A = uTAv. Finally given a psd matrix A and β > 0 we define the effective dimension by

dβeff(A) = tr(A(A + βI)−1), which provides a smoothed measure of the eigenvalues greater than or

equal to β.

4.2 SketchySGD: efficient implementation and hyperparame-

ter selection

We now formally describe SketchySGD (Algorithm 12) and its efficient implementation.

Hessian vector product oracle SketchySGD relies on one main computational primitive, a

(minibatch) Hessian vector product (hvp) oracle, to compute a low-rank approximation of the

(minibatch) Hessian. Access to such an oracle naturally arises in machine learning problems. In

the case of generalized linear models (GLMs), the Hessian is given by H(w) = 1
nX

TD(w)X, where

X ∈ Rn×p is the data matrix and D ∈ Rn×n is a diagonal matrix. Accordingly, an hvp between

HSj
(w) and v ∈ Rp is given by

HSj (w)v =
1

bhj

∑
i∈Sj

di(w)xi

(
xT
i v
)
.

For more complicated losses, an hvp can be computed by automatic differentiation (AD) [130]. The

general cost of r hvps with HSj (w) is O(bhjpr). In contrast, explicitly instantiating a Hessian entails

a heavy O(p2) storage and O(np2) computational cost. Further computational gains can be made

when the subsampled Hessian enjoys more structure, such as sparsity. If HSj
(w) has s-sparse rows

then the complexity of r hvps enjoys a significant reduction from O(bhjpr) to O(bhjsr). Hence,

computing hvps with HSj (w) is extremely cheap in the sparse setting.

Randomized low-rank approximation The hvp primitive allows for efficient randomized low-

rank approximation to the minibatch Hessian by sketching. Sketching reduces the cost of fundamental

numerical linear algebra operations without much loss in accuracy [109,173] by computing the quantity

of interest from a sketch, or randomized linear image, of a matrix. In particular, sketching enables

efficient computation of a near-optimal low-rank approximation to HSj
[35, 77,165].

SketchySGD computes a sketch of the subsampled Hessian using hvps and returns a randomized

low-rank approximation ĤSj of HSj in the form of an eigendecomposition V̂ Λ̂V̂ T , where V̂ ∈ Rp×r

and Λ̂ ∈ Rr×r. Similar to the preceding chapters, we use the randomized Nyström approximation,

following the stable implementation in [164]. The resulting algorithm RandNysApprox appears in

Section 4.7. The cost of forming the Nyström approximation is O(bhj
pr+pr2), as we need to perform

r minibatch hvps to compute the sketch, and we must perform a skinny SVD at a cost of O(pr2). The

CHAPTER 4. SKETCHYSGD 83

procedure is extremely cheap, as we find empirically we can take r to be 10 or less, so constructing

the low-rank approximation has negligible cost.

Remark 4.2.1. If the objective for f includes an l2-regularizer γ, so that the subsampled Hessian has

the form HSj
(w) = 1

bhj

∑
i∈Sj
∇2fi(w) + γI, we do not include γ in the computation of the sketch in

Algorithm 12. The sketch is only computed using minibatch hvps with 1
bhj

∑
i∈Sj
∇2fi(w).

Setting the learning rate SketchySGD automatically selects the learning rate η whenever it

updates the preconditioner. The learning rate update rule is inspired by the analysis of gradient

descent (GD) on smooth convex functions, which shows GD converges for a fixed learning rate

η = 1/L, where L is the smoothness constant. In the preconditioned setting, L is replaced by LP ,

its preconditioned analogue. SketchySGD approximates the ideal learning rate 1/LP by setting the

learning rate as

ηSketchySGD =
α

λ1

(
(ĤSj + ρI)−1/2HS′(wj)(ĤSj + ρI)−1/2

) , (4.3)

where S′ is a fresh minibatch that is sampled independently of Sj , and α is scaling factor whose

default value is 1/2. The following logic provides intuition for this choice: if f has a Lipschitz Hessian,

then

λ1

(
(ĤSj + ρI)−1/2HS′(wj)(ĤSj + ρI)−1/2

)
(1)≈ λ1

(
(ĤSj + ρI)−1/2H(wj)(ĤSj + ρI)

)−1/2 (2)

≤ 1 + ζ
(3)≈ Lloc

P (wj),

where ζ ∈ (0, 1), and Lloc
P (w) is the local preconditioned smoothness constant in some appropriately

sized ball centered about wj . Here (1) is due to Lemma 4.4.8, (2) follows from Proposition 4.4.9, and

(3) follows f having a Lipschitz Hessian. Hence SketchySGD is expected to work well as long as the

local quadratic model at wj provides an accurate description of the curvature. Moreover, this step

size ηSketchySGD = O(1) is much larger (in the preconditioned space) than the standard step size of

1/L (in the original space) for an ill-conditioned problem, and should allow faster convergence to the

minimum. These predictions are verified experimentally in Section 4.5.

Crucially, our proposed learning rate can be efficiently computed via matvecs with HSj
and

(ĤSj + ρI)−1/2 using techniques from randomized linear algebra, such as randomized powering and

the randomized Lanczos method [95, 109]. As an example, we show how to compute the learning

rate using randomized powering in Algorithm 11. Note for any vector v, (ĤSj
+ ρI)−1/2v can be

computed efficiently via the formula

(ĤSj
+ ρI)−1/2v = V̂

(
Λ̂ + ρI

)−1/2

V̂ T v +
1√
ρ

(v − V̂ V̂ T v). (4.4)

CHAPTER 4. SKETCHYSGD 84

Algorithm 11 get learning rate

Input: hvp oracle OH , Nyström approximation factors V̂ , Λ̂, regularization ρ, maximum number
of iterations q
z = randn(p, 1)
y0 = z/∥z∥
for i = 1, . . . , q do

Compute v =
(
ĤSj + ρI

)−1/2

yi−1 {Use (4.4)}
Compute v′ = HS′v by calling oracle OHS′ {S′ is a fresh minibatch}
Compute yi =

(
ĤSj + ρI

)−1/2

v′ {Use (4.4)}
λi = yTi−1yi
yi = yi/∥yi∥

end for
Set η = α/λq {Default α is 1/2}
Output: η

Computing the SketchySGD update (4.2) fast Given the rank-r approximation ĤSj
= V̂ Λ̂V̂ ⊤

to the minibatch Hessian HSj , the main cost of SketchySGD relative to standard SGD is computing

the search direction vk = (ĤSj
+ ρI)−1gBk

. This (parallelizable) computation requires O(pr) flops,

by the matrix inversion lemma [80]:

vk = V̂
(

Λ̂ + ρI
)−1

V̂ T gBk
+

1

ρ
(gBk

− V̂ V̂ T gBk
). (4.5)

The SketchySGD preconditioner is easy to use, fast to compute, and allows SketchySGD to scale to

massive problem instances.

Default parameters for Algorithm 12 We recommend setting the ranks {rj} to a constant

value of 10, the regularization ρ = 10−3L, and the stochastic Hessian batch sizes {bhj
} to a constant

value of
⌊√

ntr

⌋
, where ntr is the size of the training set. When the Hessian is constant, i.e. as in

least-squares/ridge-regression, we recommend using the preconditioner throughout the optimization,

which corresponds to u =∞. In settings where the Hessian is not constant, we recommend setting

u =
⌈
ntr

bg

⌉
, which corresponds to updating the preconditioner after each pass through the training

set.

4.3 Comparison to previous work

Here we review prior work on stochastic second-order methods, with particular emphasis on those

developed for convex optimization problems, which is the main focus of this chapter.

CHAPTER 4. SKETCHYSGD 85

Stochastic second-order methods for convex optimization Many authors have developed

stochastic second-order methods for large-scale machine learning. Broadly, these schemes can

be grouped by whether they use stochastic approximations to both the Hessian and gradient or

just a stochastic approximation to the Hessian. Stochastic second-order methods that use exact

gradients with a stochastic Hessian approximation constructed via sketching or subsampling include

[17,25,30,50,71,132,177,178]. Methods falling into the second group include [20,21,113,116,146].

Arguably, the most common strategy employed by stochastic second-order methods is to subsample

the Hessian as well as the gradient. These methods either directly apply the inverse of the subsampled

Hessian to the stochastic gradient [20,113,146], or they do an L-BFGS-style update step with the

subsampled Hessian [21,113,116]. However, the theory underlying these methods requires large or

growing gradient batch sizes [20,21,146], periodic full gradient computation [116], or interpolation [113],

which are unrealistic assumptions for large-scale convex problems. Further, many of these methods

lack practical guidelines for setting hyperparameters such as batch sizes and learning rate, leading to

the same tuning issues that plague stochastic first-order methods.

SketchySGD improves on many of these stochastic second-order methods by providing principled

guidelines for selecting hyperparameters and requiring only a modest, constant batch size. Table 4.1

compares SketchySGD with a representative subset of stochastic second-order methods on gradient

and Hesssian batch sizes, and iteration complexity required to reach a fixed suboptimality ϵ > 0.

Notice that SketchySGD is the only method that allows computing the gradient with a small constant

batch size! Hence SketchySGD empowers the user to select the gradient batch size that meets their

computational constraints. Although for fixed-suboptimality ϵ, SketchySGD only converges at rate

of O (log(1/ϵ)/ϵ), this is often sufficient for machine learning optimization, as it is well-known that

high-precision solutions do not improve generalization [1,22,105]. Moreover, most of the methods

that achieve ϵ-suboptimality in O(log(1/ϵ)) iterations require full gradients, which result in costly

iterations when n and p are large. In addition to expensive iterations, full gradient methods can also be

much slower in yielding a model with good generalization error [5]. Thus, despite converging linearly

to the minimum, full gradient methods are expensive and can be slow to reach good generalization

error.

SketchySGD also generalizes subsampled Newton methods; by letting the rank parameter rj →
rank(HSj) ≤ p, SketchySGD reproduces the algorithm of [20,113,146]. This follows as the error in the

randomized Nyström approximation is identically zero when rj = rank(HSj
), so that ĤSj

= HSj
[164].

Using a full batch gradient bg = n (and a regularized exact low-rank approximation to the subsampled

Hessian), SketchySGD reproduces the method of [50]. In particular, these methods are made practical

by this work’s analysis and practical parameter selections.

Stochastic second-order methods for non-convex optimization In the past decade, there

has been a surge of interest in stochastic second-order methods for non-convex optimization, primarily

driven by deep learning. Similar to the convex setting, many of these methods are based on

CHAPTER 4. SKETCHYSGD 86

Table 4.1: Comparison of stochastic 2nd-order methods. Fix ϵ > 0, and suppose f is of the
form (4.1), and is strongly convex. This table compares the required gradient and Hessian batch sizes
of various stochastic second-order methods, and the number of iterations required to output a point
satisfying f(w)− f(w⋆) ≤ ϵ. Here ζg, ζ ∈ (0, 1), while G(w), M(w), and κ are as in Section 4.1.3.
τρ(H(w)) denotes the ρ-dissimilarity, which is defined in Definition 4.4.5, and σ2 represents the
variance of the gradient at the optimum (see Proposition 4.4.10). The ρ-dissimilarity offers the
tightest characterization of the required Hessian minibatch size required to ensure a non-trivial
approximation of Hρ. In many interesting settings, it is much smaller than n; see Proposition 4.4.7
and the corresponding discussion.

Method
Gradient
batch size

Hessian batch size Iteration complexity

Newton Sketch [98,132] Full Full O
(
κ2 log(1/ϵ)

)
Subsampled Newton

(Full gradients) [146,177]
Full Õ

(
M(w)/µ

ζ2

)
O

(
κ2 log(1/ϵ)

)
Subsampled Newton

(Stochastic
gradients) [146]

Õ
(
G(w)2/ζ2

g

)
Õ

(
M(w)/µ

ζ2

)
O(κ2 log(1/ϵ))

Subsampled Newton
(Low-rank) [50,177]

Full Õ
(

M(w)/λr+1(H(w))

ζ2

)
O

(
κ2 log(1/ϵ)

)
SLBFGS [116]

Full evaluation
every epoch

bh O
(
κ2 log(1/ϵ)

)
SketchySGD

(Algorithm 12)
bg Õ

(
τρ(H(w))/ζ2

) O
([

LP
γℓ

ρ
µ +

σ2/(γℓµ)

ϵ

]
log(1/ϵ)

)

subsampling the Hessian, which is then combined with cubic regularization [93, 162, 174] or trust

region methods [145, 176]. Taking a more general perspective, [15, 19] have proposed a broad

stochastic model-based framework for trust-region methods that only require the gradient and

Hessian approximations to satisfy certain error bounds. Thus, even biased approximations to

the gradient and Hessian are allowed in their framework. The framework has also been useful in

the development of stochastic line search methods [85, 129] and adaptive stochastic second-order

methods [150]. Although all these methods come with strong theoretical guarantees, they have

not proven popular in deep learning, due to subproblems that are expensive to solve. To maintain

computational tractability, most stochastic second-order methods designed for deep learning forgo

theoretical guarantees in favor of scalability and good empirical performance. Popular stochastic

second-order optimizers in deep learning include K-FAC [74], Shampoo [75], and AdaHessian [175].

Despite recent advances in stochastic second-order methods for deep learning, the advantage of

stochastic second-order methods over SGD and its variants is unclear, so stochastic first-order

methods have remained the most popular optimization algorithms for deep learning.

4.4 Theory

In this section we present our main convergence theorems for SketchySGD. As mentioned in

the prequel, we do not directly analyze Algorithm 10, but a slightly modified version, which we

present in Algorithm 12. The are two differences between Algorithm 10 and Algorithm 12. First,

CHAPTER 4. SKETCHYSGD 87

Algorithm 12 SketchySGD (Theoretical version)

Input: initialization w0, learning rate η, hvp oracle OH , ranks {rj}, regularization ρ, preconditioner
update frequency u, stochastic gradient batch size bg, stochastic Hessian batch sizes {bhj}, number
of inner iterations m
for s = 0, 1, 2, . . . do
for k = 0, 1, 2, . . . ,m− 1 do

Sample a batch B
(s)
k

Compute stochastic gradient g
B

(s)
k

(w
(s)
k)

if ms + k ≡ 0 (mod u) then
Set j = j + 1
Sample a batch Sj {|Sj | = bhj

}
Φ = randn(p, rj) {Gaussian test matrix}
Q = qr econ (Φ)
Compute sketch Y = HSj (wk)Q {r calls to OHSj

}
[V̂ , Λ̂] = RandNysApprox(Y,Q, rj)

end if
Compute v

(s)
k = (ĤSj

+ ρI)−1g
B

(s)
k

(w
(s)
k) via (4.5)

w
(s)
k+1 = w

(s)
k − ηv

(s)
k {Update parameters}

end for
Set ŵ(s+1) = 1

m

∑m−1
k=0 w

(s)
k .

end for

Algorithm 10 uses an adaptive learning rate strategy, while Algorithm 12 uses a fixed learned rate.

Second, Algorithm 12 breaks the optimization into stages involving periodic averaging. At the end of

each stage, Algorithm 12 sets the initial iterate for the next stage to be the average of the iterates

from the previous stage. In this sense, Algorithm 12 resembles the SVRG algorithm of [86], except

there is no full gradient computation. Just as with SVRG, the addition of averaging is needed

purely to facilitate analysis; in practice the periodic averaging in Algorithm 12 yields no benefits.

We recommend always running Algorithm 10 in practice, which is the version we use for all of our

experiments (Section 4.5).

4.4.1 Assumptions

We show convergence of SketchySGD when f is smooth (Assumption 4.4.1) and strongly convex

(Assumption 4.4.2).

Assumption 4.4.1 (Differentiability and smoothness). The function f is twice differentiable and

L-smooth. Further, each fi is Li-smooth with Li ≤ Lmax for every i = 1, . . . , n.

Assumption 4.4.2 (Strong convexity). The function f is µ-strongly convex for some µ > 0.

CHAPTER 4. SKETCHYSGD 88

4.4.2 Quadratic regularity

Our analysis rests on the idea of relative upper and lower quadratic regularity. This is a generalization

of upper and lower quadratic regularity, which was recently introduced by the authors in [56], and

refines the ideas of relative convexity and relative smoothness introduced in [71].

Definition 4.4.3 (Relative quadratic regularity). Let f be a twice differentiable function and

A(w) : Rp 7→ Sp++(R). Then f is said to be relatively upper quadratically regular with respect to A,

if for all w,w′, w′′ ∈ Rp there exists 0 < γu <∞, such that

f(w′) ≤ f(w) + ⟨g(w), w′ − w⟩+
γu
2
∥w′ − w∥2A(w′′). (4.6)

Similarly, f is said is to be relatively lower quadratically regular, if for all w,w′, w′′ ∈ Rp there exists

0 < γℓ <∞, such that

f(w′) ≥ f(w) + ⟨g(w), w′ − w⟩+
γℓ
2
∥w′ − w∥2A(w′′). (4.7)

We say f is relatively quadratically regular with respect to A if γu <∞ and γℓ > 0.

When A(w) = H(w), the Hessian of f , relative quadratic regularity reduces to quadratic regularity

from [56]. Quadratic regularity extends ideas from [71], by having the Hessian be evaluated at a

point w′′ ̸= w in (4.6)–(4.7). This extension, while simple in nature, is essential for establishing

convergence under lazy preconditioner updates.

An important thing to note about relative quadratic regularity is it holds for useful settings of A,

under standard hypotheses, as shown by the following lemma.

Lemma 4.4.4 (Smoothness and strong convexity implies quadratic regularity). Let h : C → R,
where C is a closed convex subset of Rp. Then the following items hold

1. If h is twice differentiable and L-smooth, then for any ρ > 0, f is relatively upper quadratically

regular with respect to ∇2h(w) + ρI.

2. If h is twice differentiable, L-smooth, and µ-strongly convex, then h is relatively quadratically

regular with respect to ∇2h(w).

A proof of Lemma 4.4.4 may be found in Section 4.8.2. Importantly, (4.6) and (4.7) hold with

non-vacuous values of γu and γℓ. In the case of least-squares γu = γℓ = 1. More generally, for

strongly convex generalized linear models, it can be shown when A(·) = H(·), that γu and γℓ are

independent of the condition number of the data matrix [56], similar to the result of [71] for relative

smoothness and relative convexity. Thus, for many popular machine learning problems, the ratio

γu/γℓ is independent of the conditioning of the data.

CHAPTER 4. SKETCHYSGD 89

4.4.3 Quality of SketchySGD preconditioner

To control the batch size used to form the subsampled Hessian, we introduce ρ-dissimilarity.

Definition 4.4.5 (ρ-dissimilarity). Let H(w) be the Hessian at w. The ρ-dissimilarity is

τρ(H(w)) = max
1≤i≤n

λ1

(
(H(w) + ρI)−1/2(∇2fi(w) + ρI)(H(w) + ρI)−1/2

)
.

ρ-dissimilarity may be viewed as an analogue of coherence from compressed sensing and low-rank

matrix completion [26,27]. Similar to how the coherence parameter measures the uniformity of the

rows of a matrix, τρ(H(w)) measures how uniform the curvature of the sample {∇2fi(w)}1≤i≤n

is. Intuitively, the more uniform the curvature, the better the sample average H(w) captures the

curvature of each individual Hessian, which corresponds to smaller τρ(H(w)). On the other hand, if

the curvature is highly non-uniform, curvature information of certain individual Hessians will be in

disagreement with that of H(w), leading to a large value of τρ(H(w)).

The following lemma provides an upper bound on the ρ-dissimilarity. In particular, it shows that

the ρ-dissimilarity never exceeds n. The proof may be found in Section 4.8.3.

Lemma 4.4.6 (ρ-dissimilarity never exceeds n). For any ρ ≥ 0 and w ∈ Rp, the following inequality

holds

τρ(H(w)) ≤ min

{
n,

M(w) + ρ

µ + ρ

}
,

where M(w) = max1≤i≤n λ1(∇2fi(w)).

Lemma 4.4.6 provides a worst-case bound on the ρ-dissimilarity—if the curvature of the sample

is highly non-uniform or ρ is very small, then the ρ-dissimilarity can be large as n. However,

Lemma 4.4.6 neglects the fact that in machine learning, the fi’s are often similar to one another, so

τρ(H(w)) ought to be much smaller than n.

Clearly, for arbitrary data distributions, the ρ-dissimilarity can be large. The following proposition

shows when f is a GLM, and the data satisfies an appropriate sub-Gaussian condition, the ρ-

dissimilarity does not exceed the ρ-effective dimension of the population Hessian.

Proposition 4.4.7 (ρ-dissimilarity is small for GLMs in the machine learning setting). Let ℓ :

R 7→ R be a smooth and convex loss, and define f(w) = 1
n

∑n
i=1 fi(w) where fi(w) = ℓ(xT

i w). Fix

w ∈ Rp. Assume xi are drawn i.i.d. from some unknown distribution P(x) for i ∈ {1, . . . , n}.
Let H∞(w) = Ex∼P[ℓ′′(xTw)xxT] ≻ 0 be the population Hessian matrix, and set d̄ρeff(H∞(w)) =

max{dρeff(H∞(w)), 1}. Suppose for some constant ν the following conditions hold:

i. The random vector z = H∞(w)−1/2
√

ℓ′′(xTw)x is ν sub-Gaussian.

ii. n ≥ Cd̄ρeff(H∞(w)) log
(
n
δ

)
log
(

dρ
eff(H∞(w))

δ

)
.

CHAPTER 4. SKETCHYSGD 90

Then with probability at least 1− δ,

τρ(H(w)) = O
(
d̄ρeff(H∞(w)) log

(n
δ

))
.

The proof of Proposition 4.4.7 is given in Section 4.8.4, and is based on showing the ρ-dissimlarity

is well-behaved at the population level, and that for large enough n, the empirical Hessian concentrates

around the population Hessian.

Proposition 4.4.7 shows if f is a GLM, then for large datasets, τρ(H(w)) = Õ (dρeff(H∞(w))) with

high probability. When the eigenvalues of H∞(w) decay rapidly, the effective dimension dρeff(H∞(w))

should be smaller than (M(w) + ρ)/(ρ + µ), so Proposition 4.4.7 yields a stronger bound than

Lemma 4.4.6. For example, when the eigenvalues of H∞(w) decay at a sufficiently fast polynomial

rate, it is easily verified that dρeff(H∞(w)) = O(1/
√
ρ) [13]. Consequently τρ(H(w)) = Õ(1/

√
ρ),

which is a significant improvement over the O(1/ρ) bound of Lemma 4.4.6 when ρ is small. This is

crucial, for it is desirable to set ρ small, as this leads to a smaller preconditioned condition number,

see Proposition 4.4.9. As polynomial (or faster) decay of the eigenvalues values is common in machine

learning problems [39], τρ(H(w)) will typically be much smaller then O(1/ρ).

Lemma 4.4.8 (Closeness in Loewner ordering between Hρ
S(w) and Hρ(w)). Let ζ ∈ (0, 1), w ∈ Rp ,

and ρ ≥ 0. Construct HS with batch size bh = O

 τρ(H(w)) log

(
d
ρ
eff

(H(w))

δ

)
ζ2

. Then with probability at

least 1− δ

(1− ζ)Hρ
S(w) ⪯ Hρ(w) ⪯ (1 + ζ)Hρ

S(w).

The proof of Lemma 4.4.8 is provided in Section 4.8.5. Lemma 4.4.8 refines prior analyses such

as [177] (which itself refines the analysis of [146]), where bh depends upon (M(w) + ρ)/(µ + ρ),

which Lemma 4.4.6 shows is always larger than τρ(H(w)). Hence, the dependence upon τρ(H(w))

in Lemma 4.4.8 leads to a tighter bound on the required Hessian batch size. More importantly,

Lemma 4.4.8 and the idealized setting of Proposition 4.4.7 help show why algorithms using minibatch

Hessians with small batchsizes are able to succeed, a phenomenon that prior worst-case theory

is unable to explain. As a concrete example, adopt the setting of Proposition 4.4.7, assume fast

eigenvalue decay of the Hessian, and set ρ = O(1/n). Then Lemma 4.4.8 gives bh = Õ(
√
n),

whereas prior analysis based on (M(w) + ρ)/(µ + ρ) yields a vacuous batch size of bh = Õ(n). Thus,

Lemma 4.4.8 supports taking batch sizes much smaller than n. Motivated by this discussion, we

recommend a default batch size of bh =
√
n, which leads to excellent performance in practice; see

Section 4.5 for numerical evidence.

Utilizing our results on subsampling and ideas from randomized low-rank approximation, we

can establish the following result, which quantifies how the SketchySGD preconditioner reduces the

condition number.

CHAPTER 4. SKETCHYSGD 91

Proposition 4.4.9 (Closeness in Loewner ordering between H(w) and Ĥρ
S). Let ζ ∈(0, 1) and

w ∈ Rp. Construct HS(w) with batch size bh = O

 τρ(H(w)) log

(
d
ρ
eff

(H(w))

δ

)
ζ2

 and SketchySGD uses a

low-rank approximation ĤS to HS(w) with rank r = O(dζρeff(HS(w)) + log(1δ)). Then with probability

at least 1− δ,

(1− ζ)
1

1 + ρ/µ
Ĥρ

S ⪯ H(w) ⪯ (1 + ζ)Ĥρ
S . (4.8)

The proof of this proposition is given in Section 4.8.6. Proposition 4.4.9 shows that with high

probability, the SketchySGD preconditioner reduces the conditioner number from L/µ to (1 + ρ/µ),

which yields an L/ρ improvement over the original value. The proposition reveals a natural trade-off

between eliminating dependence upon µ and the size of bh: as ρ decreases to µ (and the preconditioned

condition number becomes smaller), the batch size must increase.

In practice, we have found that a fixed value of ρ = 10−3L yields excellent performance for convex

problems. Numerical results showing how the SketchySGD preconditioner improves the conditioning

of the Hessian throughout the optimization trajectory are presented in Figure 4.12.

Proposition 4.4.9 requires the rank of ĤSj to satisfy rj = Õ
(
dζρeff(HSj (wj)

)
, which ensures

∥ĤSj − HSj∥ ≤ ζρ holds with high probability (Lemma 3.7.4) so that the approximate Hessian

matches the subsampled Hessian up to the level of the regularization ρ.

4.4.4 Controlling the variance of the preconditioned stochastic gradient

To establish convergence of SketchySGD, we must control the second moment of the preconditioned

minibatch stochastic gradient. Recall the usual approach for minibatch SGD. In prior work, [72]

showed that when each fi is smooth and convex, the minibatch stochastic gradient of f satisfies the

following expected smoothness condition:

E∥gB(w)− gB(w⋆)∥2 ≤ 2L(f(w)− f(w⋆)), (4.9)

E∥gB(w)∥2 ≤ 2L(f(w)− f(w⋆)) + 2σ2, (4.10)

L =
n(bg − 1)

bg(n− 1)
L +

n− bg
bg(n− 1)

Lmax, σ2 =
n− bg

bg(n− 1)

1

n

n∑
i=1

∥∇fi(w⋆)∥2. (4.11)

Building on the analysis of [72], we prove the following proposition, which directly bounds the

second moment of the preconditioned stochastic gradient.

Proposition 4.4.10 (Preconditioned expected smoothness and gradient variance). Suppose that

Assumption 4.4.1 holds, P = Ĥρ
S is constructed at wP ∈ Rp, and P satisfies H(wP) ⪯ (1 + ζ)P .

Then the following inequalities hold:

Ek∥gB(w)− gB(w⋆)∥2P−1 ≤ 2LP (f(w)− f(w⋆)) ,

CHAPTER 4. SKETCHYSGD 92

Ek∥gB(w)∥2P−1 ≤ 4LP (f(w)− f(w⋆)) +
2σ2

ρ
,

where LP and σ2 are given by

LP :=

[
n(bg − 1)

bg(n− 1)
γρ
u +

n− bg
bg(n− 1)

τρ(H(wP))γρ,max
u

]
(1 + ζ), σ2 :=

n− bg
bg(n− 1)

1

n

n∑
i=1

∥∇fi(w⋆)∥2.

Here, γρ
u is the relative upper quadratic regularity constant of f with respect to H(w) + ρI, and

γρ,max
u = maxi∈[n] γ

ρ
i,u, where γρ

i,u is the relative upper quadratic regularity constant of fi with respect

to ∇2fi(w) + ρI.

The proof of this proposition may be found in Section 4.8.8. Proposition 4.4.10 generalizes

(4.9) from [72]. The bounds differ in that Proposition 4.4.10 depends upon LP , the preconditioned

analogue of L, which we call the preconditioned expected smoothness constant.

In our convergence analysis, LP plays the same role as the smoothness constant in gradient

descent. Proposition 4.4.10 reveals the role of the gradient batch size in determining the expected

smoothness constant. As the gradient batch size bg increases from 1 to n, LP decreases from

τρ(H(wP))γρ,max
u (1 + ζ) to γρ

u(1 + ζ). Recall preconditioning helps globally when γρ,max
u = O(1).

In this case, Proposition 4.4.10 implies that the batch size bg = O(τρ(H(wP)) is needed to ensure

LP = O(1). The dependence upon the ρ-dissimilarity is consistent with [56], which shows a similar

dependence when all the fi’s are strongly convex. Hence, the ρ-dissimilarity plays a key role in

determining the Hessian and gradient batch sizes.

4.4.5 Convergence of SketchySGD

In this section, we present convergence results for Algorithm 12 when f is convex and strongly convex.

We first state hypotheses governing the construction of the preconditioner at each update index j.

Assumption 4.4.11 (Preconditioner hyperparameters). Given update frequency u, total number of

stages s, number of inner iterations m, and ζ ∈ (0, 1), Algorithm 12 sets hyperparameters as follows:

1. The Hessian batchsize is set as

bhj = O

τρ(H(wj)) log
(

dρ
eff(H(wj))

δ

)
ζ2

 .

2. The randomized Nyström approximation is constructed with rank

rj = O
(
dζρeff(HS(wj)) + log

(
1

δ

))
.

CHAPTER 4. SKETCHYSGD 93

Assumption 4.4.11, along with Proposition 4.4.9 and a union bound argument, ensures that the

preconditioners constructed by Algorithm 12 faithfully approximate the Hessian with high probability

throughout all iterations.

Corollary 4.4.12 (Union bound). Let E(1)ms
u

=
⋂ms

u
j=1 E

(1)
j , and E(2)ms

u
=
⋂ms

u
j=1 E

(2)
j where

E(1)j =
{

(1− ζ)Ĥρ
Sj
⪯ Hρ(wj) ⪯ (1 + ζ)Ĥρ

Sj

}
E(2)j =

{
(1− ζ)

1

1 + ρ/µ
Ĥρ

Sj
⪯ H(wj) ⪯ (1 + ζ)Ĥρ

Sj

}
,

Then under Assumption 4.4.11,

1. For convex and smooth f , P
(
E(1)ms

u

)
≥ 1− ms

u δ.

2. For strongly convex and smooth f , P
(
E(2)ms

u

)
≥ 1− ms

u δ.

Proof. We only prove item 2, as the proof of item 1 is analogous. To this end, observe Assump-

tion 4.4.11 and Proposition 4.4.9 imply

P
(
E(2),∁j

)
≤ δ.

Thus,

P
(
E(2)ms

u

)
= 1− P

ms/u⋃
j=1

E(2),∁j

 ≥ 1−
ms/u∑
j=1

P
(
E(2),∁j

)
≥ 1− ms

u
δ.

Convergence for convex f

Our first convergence result shows SketchySGD can obtain sublinear convergence to a ball with only

one stage s when f is convex but not strongly convex. We shall see that when f is strongly convex,

the convergence rate improves from sublinear to linear, but that multiple stages (s > 1) are required

to realize this improvement.

Theorem 4.4.13 (SketchySGD convex convergence). Consider Problem Equation (4.1) under

Assumption 4.4.1. Run Algorithm 12 for s = 1 stage with m inner iterations, using gradient batch

size bg, regularization ρ > 0, learning rate η = min

{
1

4LP
,

√
ρ∥w0−w⋆∥2

P0

2σ2m

}
, update frequency u,

ζ ∈ (0, 1), and preconditioner hyperparameters specified in Assumption 4.4.11. Then conditioned on

CHAPTER 4. SKETCHYSGD 94

the event E(1)sm
u

in Corollary 4.4.12,

E [f(ŵ)− f(w⋆)] ≤ 8LP ∥w0 − w⋆∥2P0

m
+

√
2ρσ∥w0 − w⋆∥P0√

m
.

The proof is given in Section 4.4.7.

Discussion Theorem 4.4.13 shows that when f is convex, Algorithm 12 equipped with ap-

propriate fixed learning rate converges in expectation to an ϵ-ball around the minimum after

m = O
(

LP ∥w0−w⋆∥2
P0

ϵ +
ρσ2∥w0−w⋆∥2

P0

ϵ2

)
iterations. This convergence rate is consistent with previous

results on stochastic approximation using SGD for smooth convex objectives with bounded gradient

variance [99]. However, for SketchySGD, the iteration complexity depends on the preconditioned

expected smoothness constant and the preconditioned initial distance to the optimum, which may

be much smaller than their non-preconditioned counterparts. Thus, SketchySGD provides faster

convergence whenever preconditioning favorably transforms the problem. We give a concrete example

where SketchySGD yield an explicit advantage over SGD in Section 4.4.6 below.

Convergence for strongly convex f

When f is strongly convex, we can prove a stronger result that relies on the following lemma, a

preconditioned analogue of the strong convexity lower bound.

Lemma 4.4.14 (Preconditioned strong convexity bound). Let P = ĤS + ρI. Assume the conclusion

of Proposition 4.4.9 holds: ĤS approximates H well. Then

f(w)− f(w⋆) ≥ γ̂ℓ
2
∥w − w⋆∥2P ,

where γ̂ℓ = (1− ζ) µ
µ+ργℓ.

The proof of Lemma 4.4.14 is given in Section 4.8.7. We now state the convergence theorem for

SketchySGD when f is strongly convex, which makes use of several stages s.

Theorem 4.4.15 (SketchySGD strongly convex convergence). Instate Assumption 4.4.1 and As-

sumption 4.4.2. Run Algorithm 12 for

ms ≥ 32

(1− ζ)γℓ

(
LP +

2σ2

ϵρ

)
(1 + ρ/µ) log

(
2(f(w0)− f(w⋆))

ϵ

)
iterations,

with gradient batchsize bg, learning rate η = min{1/4LP , ερ/(8σ2)}, regularization µ ≤ ρ ≤ Lmax,

update frequency u, and preconditioner hyperparameters specified in Assumption 4.4.11. Then

CHAPTER 4. SKETCHYSGD 95

conditioned on the event E(2)sm
u

in Corollary 4.4.12, Algorithm 12 outputs a point ŵ(s) satisfying

E
[
f(ŵ(s))− f(w⋆)

]
≤ ϵ.

The proof is given in Section 4.4.7, along with the exact values of m and s. An immediate

corollary of Theorem 4.4.15 is that, supposing the optimal model interpolates the data so σ2 = 0,

SketchySGD converges linearly to the optimum.

Corollary 4.4.16 (Convergence under interpolation). Suppose σ2 = 0, and instate the hypotheses

of Theorem 4.4.15. Run Algorithm 12 for

ms ≥ 32

(1− ζ)

LP

γℓ
(1 + ρ/µ) log

(
2(f(w0)− f(w⋆))

ϵ

)
iterations

with learning rate η = 1
4LP

. Then Algorithm 12 outputs a point ŵ(s) satisfying

E
[
f(ŵ(s))− f(w⋆)

]
≤ ϵ.

Discussion Theorem 4.4.15 shows that with an appropriate fixed learning rate, SketchySGD

(Algorithm 12) outputs an ϵ-suboptimal point in expectation after ms = Õ
(

LP

γℓ

ρ
µ + 2σ2/µ

ϵγℓ

)
iterations.

For smooth strongly convex f , minibatch SGD with a fixed learning rate can produce an ϵ-suboptimal

point (in expectation) after Õ
(

L
µ + σ2

ϵµ3

)
iterations 2. However, this comparison is flawed as minibatch

SGD does not perform periodic averaging steps. By Theorem 4.4.15, minibatch SGD with periodic

averaging (a special case of Algorithm 12, when the preconditioner is always the identity) only requires

O
(

L
µ + σ2

ϵµ

)
iterations to reach an ϵ-suboptimal point in expectation. Comparing the two rates, we

see SketchySGD has lower iteration complexity when LP /γℓ = O(1) and γℓ = Ω(1). These relations

hold when the objective is quadratic, which we discuss in detail more below (Corollary 4.4.17).

Under interpolation, Corollary 4.4.16 shows SketchySGD with a fixed learning rate converges

linearly to ϵ-suboptimality in at most O
(

LP

γℓ

ρ
µ log

(
1
ϵ

))
iterations. When LP /γℓ satisfies LP /γℓ =

O(1), which corresponds to the setting where Hessian information can help, SketchySGD enjoys

a convergence rate of O
(

ρ
µ log

(
1
ϵ

))
, faster than the O

(
κ log

(
1
ϵ

))
rate of gradient descent. This

improves upon prior analyses of stochastic Newton methods under interpolation, which fail to

show the benefit of using Hessian information. ρ-Regularized subsampled-Newton, a special case of

SketchySGD, was only shown to converge in at most O
(

κL
ρ log

(
1
ϵ

))
iterations in [113, Theorem 1,

p. 3], which is worse than the convergence rate of gradient descent by a factor of O(L/ρ).

2This result follows from [72], using strong convexity.

CHAPTER 4. SKETCHYSGD 96

4.4.6 When does SketchySGD improve over SGD?

We now present a concrete setting illustrating when SketchySGD converges faster than SGD. Specifi-

cally, when the objective is quadratic and strongly convex, SketchySGD enjoys an improved iteration

complexity relative to SGD. In general, improved global convergence cannot be expected beyond

quadratic functions without restricting the function class, as it is well-known in the worst case,

that second-order optimization algorithms such as Newton’s method do not improve over first-order

methods [8, 122]. Thus without imposing further assumptions, improved global convergence for

quadratic functions is the best that can be hoped for. We now give our formal result.

Corollary 4.4.17 (SketchySGD converges fast for quadratic functions). Under the hypotheses of

Theorem 4.4.15, and the assumptions that f is quadratic, u = ∞, and bg = τρ(H), the following

holds:

1. If σ2 > 0, after ms = O
([

ρ
µ + σ2

ϵµ

]
log(1/ϵ)

)
iterations, Algorithm 12 outputs a point ŵ(s)

satisfying

E[f(ŵ(s))− f(w⋆)] ≤ ϵ.

2. If σ2 = 0, after ms = O
(

ρ
µ log

(
1
ϵ

))
iterations, Algorithm 12 outputs a point ŵ(s) satisfying,

E[f(ŵ(s))− f(w⋆)] ≤ ϵ.

Recall minibatch SGD has iteration complexity of O
([

L
µ + σ2

ϵµ

]
log(1/ϵ)

)
when σ2 > 0, and

O
(

L
µ log(1/ϵ)

)
when σ2 = 0. Thus, Corollary 4.4.17 shows SketchySGD (Algorithm 12) roughly

enjoys an O (L/ρ) improvement in iteration complexity relative to SGD, provided the gradient

batch size satisfies bg = O(τρ(H)). We find the prediction that SketchySGD outperforms its

non-preconditioned counterpart on ill-conditioned problems, is realized by the practical version

(Algorithm 10) in our experiments.

Remark 4.4.18 (When does better iteration complexity imply fast computational complexity?). To

understand when SketchySGD has lower computational complexity than SGD, assume interpolation

(σ2 = 0), and L ≍ Lmax. Under these hypotheses, the optimal total computational complexity of

SGD is Õ(κp), which is achieved with bg = 1. By comparison, SketchySGD (with bg = τρ(H)) has

total computational complexity Õ
(

ρ
µτ

ρ(H)p
)

. Then if τρ(H) = O(1/
√
ρ), and ρ = θLmax where

θ ∈ (0, 1), SketchySGD enjoys an improved computational complexity on the order of O
(√

Lmax/θ
)

.

Hence when τρ(H) is not too large, SketchySGD also enjoys better computational complexity.

CHAPTER 4. SKETCHYSGD 97

4.4.7 Proofs of Theorem 4.4.13 and Theorem 4.4.15

We now turn to the proofs of Theorem 4.4.13 and Theorem 4.4.15. To avoid notational clutter in the

proofs, we employ the following notation for the preconditioner at iteration k of stage s.

P
(s)
k := ĤSj + ρI,

Here j corresponds to the index of the current preconditioner, so that multiple values of k may be

mapped to the same index j. For the convex case we omit the the superscript and simply write Pk,

as s = 1. With this notational preliminaries out the way, we now commence with the proofs.

Proof of Theorem 4.4.13

Proof. Expanding, and taking the expectation conditioned on k, we reach

Ek∥wk+1 − w⋆∥2Pk
= ∥wk − w⋆∥2Pk

− 2η⟨P−1
k gk, wk − w⋆⟩Pk

+ η2Ek∥gBk
∥2
P−1

k

(∗).

Now, by convexity and Proposition 4.4.10, (∗) becomes

Ek∥wk+1 − w⋆∥2Pk
≤ ∥wk − w⋆∥2Pk

+ 2η (2ηLP − 1) (f(wk)− f(w⋆)) + 2σ2/ρ.

Summing the above display from k = 0, · · ·m− 1 yields

m−1∑
k=0

Ek∥wk+1 − w⋆∥2Pk
≤

m−1∑
k=0

∥wk − w⋆∥2Pk
+ 2ηm (2ηLP − 1)

1

m

m−1∑
k=0

[f(wk)− f(w⋆)]

+
2mη2σ2

ρ
.

Rearranging, and using convexity of f in conjunction with ŵ = 1
m

∑m−1
k=0 wk, reaches

m−1∑
k=0

Ek∥wk+1 − w⋆∥2Pk
+ 2ηm (1− 2ηLP) [f(ŵ)− f(w⋆)] ≤

m−1∑
k=0

∥wk − w⋆∥2Pk
+

2mη2σ2

ρ
.

Taking the total expectation over all iterations, we find

2ηm (1− 2ηLP)E [f(ŵ)− f(w⋆)] ≤ ∥w0 − w⋆∥2P0
+

2mη2σ2

ρ
.

Consequently, we have

E [f(ŵ)− f(w⋆)] ≤ 1

2η(1− 2ηLP)m
∥w0 − w⋆∥2P0

+
ησ2

(1− 2ηLP)ρ
.

CHAPTER 4. SKETCHYSGD 98

Setting η = min

{
1

4LP
,

√
ρ∥w0−w⋆∥2

P0

2σ2m

}
, we conclude

E [f(ŵ)− f(w⋆)] ≤ 8LP ∥w0 − w⋆∥2P0

m
+

√
2ρσ∥w0 − w⋆∥P0√

m
.

Strongly convex case Suppose we are in stage s of Algorithm 12. Following identical logic to the

convex case, we reach

m−1∑
k=0

Ek∥w(s)
k+1 − w⋆∥2P (s)

k

+ 2ηm (2ηLP − 1)
[
f(ŵ(s+1))− f(w⋆)

]
≤

m−1∑
k=0

∥w(s)
k − w⋆∥2P (s)

k

+
2mη2σ2

ρ
.

Now, taking the total expectation over all inner iterations conditioned on outer iterations 0 through

s, yields

2ηm(2ηLP − 1)
(
E0:s[f(ŵ(s+1))]− f(w⋆)

)
≤ ∥ŵ(s) − w⋆∥2P (s)

0

+
2mη2σ2

ρ
.

Invoking Lemma 4.4.14, and rearranging, the preceding display becomes

E0:s[f(ŵ(s+1))]− f(w⋆) ≤ 1

γ̂ℓη(1− 2ηLP)m

(
f(ŵ(s))− f(w⋆)

)
+

ησ2

(1− 2ηLP)ρ
.

Setting m =
16(LP+2σ2/(ϵρ))

γ̂ℓ
and using η = min{1/4LP ,

ερ
8σ2 }, the previous display and a routine

computation yield

E0:s[f(ŵ(s+1))]− f(w⋆) ≤ 1

2

(
f(ŵ(s))− f(w⋆)

)
+

ε

4
.

Taking the total expectation over all outer iterations and recursing, obtains

E[f(ŵ(s))]− f(w⋆) ≤
(

1

2

)s

(f(w0)− f(w⋆)) +
ε

2
.

Setting s = 2 log
(

2(f(w0)−f(w⋆))
ϵ

)
, we conclude

E[f(ŵ(s))]− f(w⋆) ≤ ϵ,

as desired.

CHAPTER 4. SKETCHYSGD 99

4.5 Numerical experiments

In this section, we evaluate the performance of SketchySGD through six sets of experiments. These

experiments are presented as follows:

• Comparisons to first-order methods (Section 4.5.1): We compare SketchySGD to SGD, SVRG,

minibatch SAGA [63] (henceforth referred to as SAGA) and loopless Katyusha (L-Katyusha) on

ridge regression and l2-regularized logistic regression. SketchySGD outperforms the competitor

methods, even after they have been tuned.

• Comparisons to second-order methods (Section 4.5.2): We compare SketchySGD to L-BFGS

[104], stochastic LBFGS (SLBFGS) [116], randomized subspace Newton (RSN) [71], and

Newton Sketch [132] on ridge regression and l2-regularized logistic regression. SketchySGD

either outperforms or performs comparably to these methods.

• Comparisons to preconditioned CG (PCG) (Section 4.5.3): We compare SketchySGD to

Jacobi PCG [83,161], sketch-and-precondition PCG (with Gaussian and sparse embeddings)

[10,34,109,114], and Nyström PCG on ridge regression from Chapter 2. Again, SketchySGD

either outperforms or performs comparably to these methods.

• Large-scale logistic regression (Section 4.5.4): We compare SketchySGD to SGD and SAGA on

a random features transformation of the HIGGS dataset, where computing full gradients of the

objective is computationally prohibitive. SketchySGD vastly outperforms the competition in

this setting.

• Tabular deep learning with multi-layer perceptrons (Section 4.5.5): We compare SketchySGD to

popular first-order (SGD, Adam, Yogi [90,143,180]) and second-order methods in deep learning

(AdaHessian, Shampoo [75, 153, 175]). SketchySGD outperforms the second-order methods and

performs comparably to the first-order methods.

• In the supplement, we provide ablation studies for SketchySGD’s key hyperparmeters: update

frequency (Section 4.11.2), rank parameter (Section 4.11.2), and learning rate (Section 4.11.4).

We also demonstrate how SketchySGD improves problem conditioning in Section 4.11.5.

For convex problems, we run SketchySGD with two different preconditioners: (1) Nyström, which

takes a randomized-low rank approximation to the subsampled Hessian and (2) Subsampled Newton

(SSN), which uses the subsampled Hessian without approximation. Recall, this is a special case of

the Nyström preconditioner for which the rank rj is equal to the Hessian batch size bhj . SketchySGD

is ran according to the defaults presented in Section 4.2, except for in the deep learning experiments

(Section 4.5.5).

The datasets used in Sections 4.5.1 to 4.5.3 are presented in Table 4.2. Datasets with “-rf” after

their names have been transformed using random features [111,136]. The condition number reported

CHAPTER 4. SKETCHYSGD 100

in Table 4.2 is a lower bound on the condition number of the corresponding ridge regression/logistic

regression problem.3

Table 4.2: Datasets and summary statistics.

Dataset ntr ntest p nonzeros % Condition number Task
E2006-tfidf [91] 16087 3308 150360 0.8256 1.051× 106 Ridge

YearPredictionMSD-rf [46] 463715 51630 4367 50.58 1.512× 104 Ridge
yolanda-rf [76] 320000 80000 1000 100 1.224× 104 Ridge
ijcnn1-rf [134] 49990 91701 2500 100 3.521× 105 Logistic
real-sim [29] 57847 14462 20958 0.2465 1.785× 101 Logistic
susy-rf [14] 4500000 500000 1000 100 4.626× 108 Logistic

Each method is run for 40 full gradient evaluations (except Sections 4.5.4 and 4.5.5, where we use

10 and 105, respectively). Note for SVRG, L-Katyusha, and SLBFGS, this corresponds to 20 epochs,

as at the end of each epoch SVRG, they compute full a gradients to perform variance reduction. All

methods use a gradient batch size of bg = 256.

We plot the distribution of results for each dataset and optimizer combination over several

random seeds to reduce variability in the outcomes; the solid/dashed lines show the median and

shaded regions represent the 10–90th quantile. The figures we show are plotted with respect to both

wall-clock time and full gradient evaluations. We truncate plots with respect to wall-clock time at

the time when the second-fastest optimizer terminates. We place markers at every 10 full data passes

for curves corresponding to SketchySGD, allowing us to compare the time efficiency of using the

Nyström and SSN preconditioners in our method.

Additional details appear in Section 4.10 and code to reproduce our experiments may be found

at the git repo https://github.com/udellgroup/SketchySGD.

4.5.1 SketchySGD outperforms first-order methods

In this section, we compare SketchySGD to the first-order methods SGD, SVRG, SAGA, and

L-Katyusha. In Section 4.5.1, we use the default values for the learning rate/smoothness hyperpa-

rameters, based on recommendations made in [37, 86, 94] and scikit-learn [131]4 (see Section 4.10

for more details). In Section 4.5.1, we tune the learning rate/smoothness hyperparameter via grid

search. Across both settings, SketchySGD outperforms the competition.

First-order methods — defaults

Figures 4.2 and 4.3 compare SketchySGD to first-order methods run with their defaults. SketchySGD

(Nyström) and SketchySGD (SSN) uniformly outperform their first-order counterparts, sometimes

3Details of how this lower bound is computed are given in Section 4.9.
4SGD does not have a default learning rate. Therefore, we exclude this method from this comparison.

https://github.com/udellgroup/SketchySGD

CHAPTER 4. SKETCHYSGD 101

0 2 4 6 8
Wall-clock time (s)

2.5

4.0
×10−1 ijcnn1-rf

0 2 4
Wall-clock time (s)

0.2

4.0
×10−1 real-sim

0 200 400
Wall-clock time (s)

4.4

6.0
×10−1 susy-rf

0 10 20 30 40
Full gradient evaluations

2.5

4.0
×10−1 ijcnn1-rf

0 10 20 30 40
Full gradient evaluations

0.2

4.0
×10−1 real-sim

0 10 20 30 40
Full gradient evaluations

4.4

6.0
×10−1 susy-rf

T
ra

in
in

g
L

os
s

SVRG

SAGA

L-Katyusha

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.2: Comparisons to first-order methods with default learning rates (SVRG, SAGA) and
smoothness parameters (L-Katyusha) on l2-regularized logistic regression.

dramatically. In the case of the E2006-tfidf and ijcnn1-rf datasets, SVRG, SAGA, and L-Katyusha

make no progress at all. Even for datasets where SVRG, SAGA, and L-Katyusha do make progress,

their performance lags significantly behind SketchySGD (Nyström) and SketchySGD (SSN). Second-

order information speeds up SketchySGD without significant computational costs: the plots show

both variants of SketchySGD converge faster than their first-order counterparts.

The plots also show that SketchySGD (Nyström) and SketchySGD (SSN) exhibit similar perfor-

mance, despite SketchySGD (Nyström) using much less information than SketchySGD (SSN). For

the YearPredictionMSD-rf and yolanda-rf datasets, SketchySGD (Nyström) performs better than

SketchySGD (SSN). We expect this gap to become more pronounced as n grows, for SketchySGD

(SSN) requires O(
√
np) flops to apply the preconditioner, while SketchySGD (Nyström) needs only

O(rp) flops. This hypothesis is validated in Section 4.5.4, where we perform experiments on a

large-scale version of the HIGGS dataset.

First-order methods — tuned

Figures 4.4 and 4.5 show that SketchySGD (Nyström) and SketchySGD (SSN) generally match or

outperform tuned first-order methods. For the tuned first-order methods, we only show the curve

corresponding to the lowest attained training loss.

CHAPTER 4. SKETCHYSGD 102

0 2 4 6 8
Wall-clock time (s)

1.4

2.2
×10−1 e2006

0 100 200
Wall-clock time (s)

0.5

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Wall-clock time (s)

3.6

4.5
×10−1 yolanda-rf

0 10 20 30 40
Full gradient evaluations

1.4

2.2
×10−1 e2006

0 10 20 30 40
Full gradient evaluations

0.5

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Full gradient evaluations

3.6

4.5
×10−1 yolanda-rf

T
ra

in
in

g
L

os
s

SVRG

SAGA

L-Katyusha

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.3: Comparisons to first-order methods with default learning rates (SVRG, SAGA) and
smoothness parameters (L-Katyusha) on ridge regression.

SketchySGD (Nyström) and SketchySGD (SSN) outperform the competitor methods on E2006-

tfidf and YearPredictionMSD-rf, while performing comparably on both yolanda-rf and susy-rf. On

real-sim, we find SGD and SAGA perform better than SketchySGD (Nyström) and SketchySGD

(SSN) on wall-clock time, but perform similarly on gradient evaluations.

4.5.2 SketchySGD (usually) outperforms second-order methods

We compare SketchySGD to the second-order methods L-BFGS (using the implementation in SciPy),

SLBFGS, RSN, and Newton Sketch. For SLBFGS, we tune the learning rate; we do not tune learning

rates for L-BFGS, RSN, or Newton Sketch since these methods use line search. The results for logistic

and ridge regression are presented in Figures 4.6 and 4.7, respectively. In several plots, SLBFGS

cuts off early because it tends to diverge at the best learning rate obtained by tuning. L-BFGS also

terminates early on ijcnn1-rf and real-sim because it reaches a high-accuracy solution in under 40

iterations. We are generous to methods that use line search — we do not account for the number of

function evaluations performed by L-BFGS, RSN, and Newton Sketch, nor do we account for the

number of additional full gradient evaluations performed by L-BFGS to satisfy the strong Wolfe

conditions.

Out of all the methods, SketchySGD provides the most consistent performance. When considering

wall-clock time performance, SketchySGD is only outperformed by SLBFGS (although it eventually

CHAPTER 4. SKETCHYSGD 103

0 2 4 6 8
Wall-clock time (s)

2.5

4.0
×10−1 ijcnn1-rf

0 1 2 3 4
Wall-clock time (s)

2.0

9.0
×10−2 real-sim

0 100 200 300 400
Wall-clock time (s)

4.4

6.0
×10−1 susy-rf

0 10 20 30 40
Full gradient evaluations

2.5

4.0
×10−1 ijcnn1-rf

0 10 20 30 40
Full gradient evaluations

2.0

9.0
×10−2 real-sim

0 10 20 30 40
Full gradient evaluations

4.4

6.0
×10−1 susy-rf

T
ra

in
in

g
L

os
s

SGD

SVRG

SAGA

L-Katyusha

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.4: Comparisons to first-order methods with tuned learning rates (SGD, SVRG, SAGA) and
smoothness parameters (L-Katyusha) on l2-regularized logistic regression.

diverges) and Newton Sketch on ijcnn1-rf, L-BFGS on real-sim, and RSN on yolanda-rf. On larger,

dense datasets, such as YearPredictionMSD-rf and susy-rf, SketchySGD is the clear winner. We

expect the performance gap between SketchySGD and the second-order methods to grow as the

datasets become larger, and we show this is the case in Section 4.12.1.

4.5.3 SketchySGD (usually) outperforms PCG

We compare SketchySGD to PCG with Jacobi, Nyström, and sketch-and-precondition (Gaussian and

sparse embeddings) preconditioners. The results for ridge regression are presented in Figure 4.8. For

PCG, full gradient evaluations refer to the total number of iterations.

Similar to the results in Section 4.5.2, SketchySGD provides the most consistent performance.

On wall-clock time, SketchySGD is eventually outperformed by JacobiPCG on E2006-tfidf and

NyströmPCG on yolanda-rf. However, SketchySGD (Nyström) already reaches a reasonably low

training loss within 10 seconds and 2 seconds on YearPredictionMSD-rf and yolanda-rf, respectively,

while the PCG methods take much longer to reach this level of accuracy. Furthermore, SketchySGD

outperforms the sketch-and-precondition methods on all datasets. We expect the performance gap

between SketchySGD and PCG to grow as the datasets become larger, and we show this is the case

in Section 4.12.2.

CHAPTER 4. SKETCHYSGD 104

0 2 4 6 8
Wall-clock time (s)

1.4

2.2
×10−1 e2006

0 50 100 150 200
Wall-clock time (s)

0.5

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Wall-clock time (s)

3.6

4.5
×10−1 yolanda-rf

0 10 20 30 40
Full gradient evaluations

1.4

2.2
×10−1 e2006

0 10 20 30 40
Full gradient evaluations

0.5

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Full gradient evaluations

3.6

4.5
×10−1 yolanda-rf

T
ra

in
in

g
L

os
s

SGD

SVRG

SAGA

L-Katyusha

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.5: Comparisons to first-order methods with tuned learning rates (SGD, SVRG, SAGA) and
smoothness parameters (L-Katyusha) on ridge regression.

0 2 4 6 8
Wall-clock time (s)

2.5

4.0
×10−1 ijcnn1-rf

0 2 4 6
Wall-clock time (s)

2.0

9.0
×10−2 real-sim

0 200 400 600
Wall-clock time (s)

4.4

6.0
×10−1 susy-rf

0 10 20 30 40
Full gradient evaluations

2.5

4.0
×10−1 ijcnn1-rf

0 10 20 30 40
Full gradient evaluations

2.0

9.0
×10−2 real-sim

0 10 20 30 40
Full gradient evaluations

4.4

6.0
×10−1 susy-rf

T
ra

in
in

g
L

os
s

L-BFGS

SLBFGS

RSN

Newton Sketch

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.6: Comparisons to second-order methods (L-BFGS, SLBFGS, RSN, Newton Sketch) on
l2-regularized logistic regression.

CHAPTER 4. SKETCHYSGD 105

0 2 4 6 8
Wall-clock time (s)

1.4

2.2
×10−1 e2006

0 100 200 300
Wall-clock time (s)

0.5

1.0
×102 yearpredictionmsd-rf

0 20 40
Wall-clock time (s)

3.6

4.5
×10−1 yolanda-rf

0 10 20 30 40
Full gradient evaluations

1.4

2.2
×10−1 e2006

0 10 20 30 40
Full gradient evaluations

0.5

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Full gradient evaluations

3.6

4.5
×10−1 yolanda-rf

T
ra

in
in

g
L

os
s

L-BFGS

SLBFGS

RSN

Newton Sketch

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.7: Comparisons to second-order methods (L-BFGS, SLBFGS, RSN, Newton Sketch) on
ridge regression.

0 2 4 6 8
Wall-clock time (s)

1.4

2.2
×10−1 e2006

0 100 200 300
Wall-clock time (s)

0.5

1.0
×102 yearpredictionmsd-rf

0 20 40
Wall-clock time (s)

3.6

4.5
×10−1 yolanda-rf

0 10 20 30 40
Full gradient evaluations

1.4

2.2
×10−1 e2006

0 10 20 30 40
Full gradient evaluations

0.5

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Full gradient evaluations

3.6

4.5
×10−1 yolanda-rf

T
ra

in
in

g
L

os
s

NyströmPCG

GaussPCG

SparsePCG

JacobiPCG

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.8: Comparisons to PCG (Jacobi, Nyström, sketch-and-precondition w/ Gaussian and sparse
embeddings) on ridge regression.

CHAPTER 4. SKETCHYSGD 106

0 1000 2000 3000 4000
Wall-clock time (s)

6.4

7.0
×10−1 higgs-rf

2 4 6 8 10
Epochs

6.4

7.0
×10−1 higgs-rf

T
es

t
L

os
s

SAGA SketchySGD (Nyström) SketchySGD (SSN)

Figure 4.9: Comparison between SketchySGD and SAGA with default learning rate.

4.5.4 SketchySGD outperforms competitor methods on large-scale data

We apply random Fourier features to the HIGGS dataset, for which (ntr, p) = (1.05 · 107, 28), to

obtain a transformed dataset with size (ntr, p) = (1.05 ·107, 104). This transformed dataset is 840 GB,

larger than the hard drive and RAM capacity of most computers. To optimize, we load the original

HIGGS dataset in memory and at each iteration, form a minibatch of the transformed dataset by

applying the random features transformation to a minibatch of HIGGS. In this setting, computing a

full gradient of the objective is computationally prohibitive. We exclude SVRG, L-Katyusha, and

SLBFGS since they require full gradients.

We compare SketchySGD to SGD and SAGA with both default learning rates (SAGA only) and

tuned learning rates (SGD and SAGA) via grid search.

Figures 4.9 and 4.10 show these two sets of comparisons5. We only plot test loss, as computing

the training loss is as expensive as computing a full gradient. The wall-clock time plots only show the

time taken in optimization; they do not include the time taken in repeatedly applying the random

features transformation. We find SGD and SAGA make little to no progress in decreasing the test

loss, even after tuning. However, both SketchySGD (Nyström) and SketchySGD (SSN) are able to

decrease the test loss significantly. Furthermore, SketchySGD (Nyström) is able to achieve a similar

test loss to SketchySGD (SSN) while taking less time, confirming that SketchySGD (Nyström) can

be more efficient than SketchySGD (SSN) in solving large problems.

4.5.5 Tabular deep learning with multilayer perceptrons

Our experiments closely follow the setting in [87]. We compare SketchySGD (Nyström) to SGD,

Adam, AdaHessian, Yogi, and Shampoo, which are popular optimizers for deep learning. For

experiments in this setting, we modify SketchySGD (Nyström) to use momentum and gradient

debiasing, as in Adam (Section 4.7.1); we also set ρ = 10−1 since it provides better performance. We

5The wall-clock time in Figure 4.10 cuts off earlier than in Figure 4.9 due to the addition of SGD, which completes
10 epochs faster than the other methods.

CHAPTER 4. SKETCHYSGD 107

0 1000 2000 3000
Wall-clock time (s)

6.4

7.0
×10−1 higgs-rf

2 4 6 8 10
Epochs

6.4

7.0
×10−1 higgs-rf

T
es

t
L

os
s

SGD SAGA SketchySGD (Nyström) SketchySGD (SSN)

Figure 4.10: Comparison between SketchySGD, SGD and SAGA with tuned learning rates.

use a 9-layer MLP with 512 units in each layer, and cosine annealing for learning rate scheduling. We

run the methods on the Fashion-MNIST, Devnagari-Script, and volkert datasets from OpenML [167].

Throughout, we use the weighted cross-entropy loss and balanced accuracy as evaluation metrics.

We only tune the initial learning rate for the methods and do so via random search. We form a

60/20/20 training/validation/test split of the data, and select the learning rate with the highest

balanced validation accuracy to generate the results reported in this section.

Test accuracy curves for each optimizer are presented in Figure 4.11, and final test accuracies

with quantiles are given in Table 4.3. We see SketchySGD consistently outperforms Shampoo, which

is an optimizer designed to approximate full-matrix AdaGrad [47]. Furthermore, SketchySGD tends

to be more stable than SGD after tuning. However, it is unclear whether SketchySGD performs

better than SGD, Adam, or Yogi, which are all first-order optimizers. The reasons for this lack of

improvement are unclear, providing an interesting direction for future work.

Table 4.3: 10th and 90th quantiles for final test accuracies.

Dataset\
Optimizer

SGD Adam Yogi AdaHessian Shampoo SketchySGD

Fashion-
MNIST

(82.19,
90.47)

(90.10, 90.51)
(90.26,
90.58)

(82.25, 90.53)
(88.59,
89.10)

(90.19, 90.50)

Devnagari-
Script

(2.17, 96.23) (95.57, 95.98)
(95.67,
95.91)

(95.90, 96.17)
(92.18,
93.34)

(96.11, 96.30)

volkert
(64.03,
64.58)

(64.61, 65.36)
(64.08,
64.84)

(63.66, 64.52)
(57.50,
60.22)

(63.90, 65.01)

4.6 Conclusion

In this chapter, we have presented SketchySGD, a fast stochastic second-order method for convex

machine learning problems. SketchySGD uses subsampling and randomized low-rank approximation

to improve conditioning by approximating the curvature of the loss. Furthermore, SketchySGD uses

CHAPTER 4. SKETCHYSGD 108

0 100 200 300
Wall-clock Time (s)

80

85

90

95
fashion-mnist

0 100 200 300 400
Wall-clock Time (s)

80

85

90

95

100
devnagari-script

0 100 200
Wall-clock Time (s)

50

55

60

65

70
volkert

0 25 50 75 100
Epochs

80

85

90

95
fashion-mnist

0 25 50 75 100
Epochs

80

85

90

95

100
devnagari-script

0 25 50 75 100
Epochs

50

55

60

65

70
volkert

T
es

t
A

cc
u

ra
cy

(%
)

SGD

Adam

Yogi

AdaHessian

Shampoo

SketchySGD (Nyström)

Figure 4.11: Test accuracies for SketchySGD and competitor methods on tabular deep learning tasks.

a novel automated learning rate and comes with default hyperparameters that enable it to work out

of the box without tuning.

SketchySGD has strong benefits both in theory and in practice. For quadratic objectives, our

theory shows SketchySGD converges to ϵ-suboptimality at a faster rate than SGD, and our experiments

validate this improvement in practice. SketchySGD with its default hyperparameters outperforms or

matches the performance of SGD, SAGA, SVRG, SLBFGS, and L-Katyusha (the last four of which

use variance reduction), even when optimizing the learning rate for the competing methods using

grid search.

4.7 Additional algorithms

In this section we provide the pseudocode for the RandNysApprox algorithm mentioned in Section 4.2,

which SketchySGD uses to construct the low-rank approximation ĤSj
.

Algorithm 13 follows Algorithm 3 from [164]. eps(x) is defined as the positive distance between

x and the next largest floating point number of the same precision as x. The test matrix Q is the

same test matrix used to generate the sketch Y of HSk
. The resulting Nyström approximation ĤSk

is given by V̂ Λ̂V̂ T . The resulting Nyström approximation is psd but may have eigenvalues that are

equal to 0. In our algorithms, this approximation is always used in conjunction with a regularizer to

ensure positive definiteness.

CHAPTER 4. SKETCHYSGD 109

Algorithm 13 RandNysApprox

Input: sketch Y ∈ Rp×rj of HSj , orthogonalized test matrix Q ∈ Rp×rj ,
ν =
√
peps(norm(Y, 2)) {Compute shift}

Yν = Y + νQ {Add shift for stability}
C = chol(QTYν) {Cholesky decomposition: CTC = QTYν}
B = Y C−1 {Triangular solve}
[V̂ ,Σ,∼] = svd(B, 0) {Thin SVD}
Λ̂ = max{0,Σ2 − νI} {Compute eigs, and remove shift with element-wise max}
Output: V̂ , Λ̂

4.7.1 Modifications for deep learning

We make modifications to the randomized Nyström approximation and SketchySGD for deep learning.

Algorithm 14 adapts Algorithm 13 to the non-convex (e.g., deep learning) setting, and ensures that

the Randomized Nyström approximation remains positive definite. The main difference between

Algorithm 14 and Algorithm 13 is that Algorithm 14 comes with a fail-safe step (colored red in the

algorithm block) in case the subsampled Hessian is indefinite and the resulting Cholesky decomposition

fails. When this failure occurs, the fail-safe step shifts the spectrum of C by its smallest eigenvalue

to ensure it is positive definite. When there is no failure, it is easy to see that Algorithm 14 gives the

exact same output as Algorithm 13.

Algorithm 14 RandNysApproxMod

Input: sketch Y ∈ Rp×rj of HSj , orthogonalized test matrix Q ∈ Rp×rj

ν =
√
p eps(norm(Y, 2)) {Compute shift}

Yν = Y + νQ {Add shift for stability}
λ = 0 {Additional shift may be required for positive definiteness}
C = chol(QTYν) {Cholesky decomposition: CTC = QTYν}
if chol fails then

Compute [W,Γ] = eig(QTYν) {QTYν is small and square}
Set λ = λmin(QTYν)
R = W (Γ + |λ|I)−1/2WT

B = Y R {R is psd}
else
B = Y C−1 {Triangular solve}

end if
[V̂ ,Σ,∼] = svd(B, 0) {Thin SVD}
Λ̂ = max{0,Σ2 − (ν + |λ|)I} {Compute eigs, and remove shift with element-wise max}
Output: V̂ , Λ̂

Algorithm 15 adds momentum (which is a hyperparameter β) and gradient debiasing (similar to

Adam) to the practical version of SketchySGD Algorithm 10. These changes to the algorithm are

shown in red. In addition, Algorithm 15 does not use the automated learning rate; the learning rate

is now an input to the algorithm.

CHAPTER 4. SKETCHYSGD 110

Algorithm 15 SketchySGD (Deep learning version)

Input: initialization w0, learning rate η, momentum parameter β, hvp oracle OH , ranks {rj},
regularization ρ, preconditioner update frequency u, stochastic gradient batch size bg, stochastic
Hessian batch sizes {bhj}
Initialize z−1 = 0 {Initialize momentum vector}
for k = 0, 1, . . . ,m− 1 do

Sample a batch Bk

Compute stochastic gradient gBk
(wk)

if k ≡ 0 (mod u) then
Set j = j + 1
Sample a batch Sj {|Sj | = bhj

}
Φ = randn(p, rj) {Gaussian test matrix}
Q = qr econ (Φ)
Compute sketch Y = HSj

(wk)Q {r calls to OHSj
}

[V̂ , Λ̂] = RandNysApproxMod(Y,Q, rj)
end if
zk = βzk−1 + (1− β)gBk

(wk) {Update biased first moment estimate}
ẑk = zk/(1− βk+1) {Compute bias-corrected first moment estimate.}
Compute vk = (ĤSj

+ ρI)−1ẑk via (4.5)
wk+1 = wk − ηvk {Update parameters}

end for

4.8 Proofs not appearing in the main chapter

In this section, we give the proofs of claims that are not present in the main chapter.

4.8.1 Proof that SketchySGD is SGD in preconditioned space

Here we give the proof of (4.2) from Section 4.1. As in the prequel, we set Pj = Ĥρ
Sj

in order to

avoid notational clutter. Recall the SketchySGD update is given by

wk+1 = wk − ηjP
−1
j gBk

,

where EBk
[gBk

] = gk. We start by making the following observation about the SketchySGD update.

Lemma 4.8.1 (SketchySGD is SGD in preconditioned space). At outer iteration j define fPj
(z) =

f(P
−1/2
j z), that is define the change of variable w = P

−1/2
j z. Then,

gPj
(z) = P

−1/2
j g(P

−1/2
j z) = P

−1/2
j g(w)

HPj (z) = P
−1/2
j H(P

−1/2
j z)P

−1/2
j = P

−1/2
j H(w)P

−1/2
j .

CHAPTER 4. SKETCHYSGD 111

Hence the SketchySGD update may be realized as

zk+1 = zk − ηj ĝPj
(zk)

wk+1 = P
−1/2
j zk+1,

where ĝPj (zk) = P
−1/2
j gBk

(P
−1/2
j zk) is the stochastic gradient in preconditioned space.

Proof. The first display of equations follow from the definition of the change of variable and the

chain rule, while the last display follows from definition of the SketchySGD update and the first

display.

4.8.2 Proof of Lemma 4.4.4

Proof. Let w,w′, w′′ ∈ C and set v = w′−w. Then by Taylor’s theorem and smoothness and convexity

of h, it holds that

h(w′) = h(w) + ⟨∇f(w), v⟩+

(∫ 1

0

(1− t)
∥v∥2∇2h(w+tv)

∥v∥2A(w′′)

dt

)
∥v∥2A(w′′)

= h(w) + ⟨∇h(w), v⟩+
I
2
∥v∥2A(w′′),

where I =

∫ 1

0

(1− t)
∥v∥2∇2h(w+tv)

∥v∥2A(w′′)

.

Now, if h is just convex and A(w′′) = ∇2h(w′′) +ρI, a routine calculation shows that I ≤ L/ρ, which

by definition implies γu(C) ≤ L/ρ. This gives the first statement. For the second statement, note

that when h is µ-strongly convex and A(w′′) = ∇2h(w′′), we have µ/L ≤ I ≤ L/µ, which implies

the second claim with µ/L ≤ γℓ(C) ≤ γu(C) ≤ L/µ.

4.8.3 Proof of Lemma 4.4.6

Below we provide the proof of Lemma 4.4.6.

Proof. By convexity of the fi’s and the finite sum structure of f , it is easy to see that

∇2fi(w) + ρI ⪯ n (H(w) + ρI) ∀i ∈ [n].

Conjugating both sides by (Hρ)−1/2, we reach

(H(w) + ρI)
−1/2 (∇2fi(w) + ρI

)
(H(w) + ρI)

−1/2 ⪯ nI.

CHAPTER 4. SKETCHYSGD 112

It now immediately follows that τρ(H(w)) ≤ n. On the other hand, for all i ∈ {1, . . . n} we have

∇2fi(w) + ρI ⪯
[
λ1

(
∇2fi(w)

)
+ ρ
]
I ⪯ (M(w) + ρ) I,

where the last relation follows by definition of M(w). So, conjugating by (Hρ(w))
−1/2

we reach

(Hρ(w))
−1/2 (∇2fi(w) + ρI

)
(Hρ(w))

−1/2 ⪯ (M(w) + ρ) (H(w) + ρI)
−1 ⪯ M(w) + ρ

µ + ρ
I,

which immediately yields τρ(H(w)) ≤ M(w)+ρ
µ+ρ . Combining both bounds, we conclude

τρ (H(w)) ≤ min

{
n,

M(w) + ρ

µ + ρ

}
.

4.8.4 Proof of Proposition 4.4.7

The proof of Proposition 4.4.7 is the culmination of several lemmas. We begin with a truncated

intrinsic dimension Matrix Bernstein Inequality discussed, only requires bounds on the first and

second moments that hold with some specified probability. It refines [81], who established a similar

result for the vanilla Matrix Bernstein Inequality.

Lemma 4.8.2 (Truncated Matrix Bernstein with intrinsic dimension). Let {Xi}i∈[n] be a sequence

of independent mean zero random matrices of the same size. Let β ≥ 0 and {V1,i}i∈[n], {V2,i}i∈[n] be se-

quences of matrices with V1,i, V2,i ⪰ 0 for all i. Consider the event Ei =
{
∥Xi∥ ≤ β,XiX

T
i ⪯ V1,i, X

T
i Xi ⪯ V2,i

}
.

Define Yi = Xi1Ei , Y =
∑n

i=1 Yi. Suppose that the following conditions hold

P (Ei) ≥ 1− δ for all i ∈ [n],

∥E[Yi]∥ ≤ q.

Set V1 =
∑n

i=1 V1,i, V2 =
∑n

i=1 V2,i, and define

V =

[
V1 0

0 V2

]
, ς2 = max{∥V1∥, ∥V2∥.}

Then for all t ≥ q + ς + β
3 , X =

∑n
i=1 Xi satisfies

P (∥X∥ ≥ t) ≤ nδ + 4
trace(V)

∥V∥ exp

(−(t− q)2/2

ς2 + β(t− q)/3

)
.

Proof. The argument consists of relating P (∥X∥ ≥ t) to P (∥Y ∥ ≥ t), the latter of which is easily

CHAPTER 4. SKETCHYSGD 113

bounded. Indeed, from the definition of the Ei’s, it is easily seen that

∥Yi∥ ≤ β, E
[
(Y − E[Y])(Y − E[Y])T

]
⪯ V1, E

[
(Y − E[Y])T (Y − E[Y])

]
⪯ V2.

Consequently, the intrinsic dimension Matrix Bernstein inequality [163, Theorem 7.3.1] implies for

any s ≥ ς + β/3, that

P (∥Y − E[Y]∥ ≥ s) ≤ 4
trace(V)

∥V∥ exp

(−s2/2

ς2 + βs/3

)
. (4.12)

We now relate the tail probability of ∥X∥ to the tail probability of ∥Y ∥. To this end, the law of

total probability implies

P (∥X∥ ≥ t) = P (∥Y ∥ ≥ t|X = Y)P(X = Y)

+ P (∥X∥ ≥ t|X ̸= Y)P(X ̸= Y)

≤ P (∥Y ∥ ≥ t|X = Y) + P

(
n⋃

i=1

E∁i

)
≤ P (∥X∥ ≥ t|X = Y) + nδ,

where the third inequality follows from {X ̸= Y } ⊂ ⋃n
i=1 E∁i , and the last inequality uses P

(⋃n
i=1 E∁i

)
≤∑n

i=1 (1− P(Ei)) ≤ nδ. To bound P (∥X∥ ≥ t|X = Y), observe that

∥X∥ ≤ ∥X − E[Y]∥+ ∥E[Y]∥ ≤ ∥X − E[Y]∥+ q,

which implies

P (∥X∥ ≥ t|X = Y) ≤ P (∥X − E[Y]∥+ q ≥ t|X = Y)

= P (∥Y − E[Y]∥ ≥ t− q|X = Y) .

Inserting this last display into our bound for P (∥X∥ ≥ t) , we find

P (∥X∥ ≥ t) ≤ nδ + P (∥Y − E[Y]∥ ≥ t− q|X = Y) .

To conclude, we apply (4.12) with s = t− q to obtain

P (∥X∥ ≥ t) ≤ nδ + 4
trace(V)

∥V∥ exp

(−(t− q)2/2

ς2 + β(t− q)/3

)
,

for all t ≥ q + ς + β/3.

CHAPTER 4. SKETCHYSGD 114

Lemma 4.8.3 (Bounded statistical leverage). Let Dρ
∞ = H∞(w)1/2Hρ

∞(w)−1H∞(w)1/2, and set

d̄ρeff(Hρ
∞(w)) = max{dρeff(Hρ

∞(w)), 1}. Then for some absolute constant C > 0,

P

{∥∥∥∥√ℓ′′(xTw)x

∥∥∥∥2
Hρ

∞(w)−1

> Cd̄ρeff(H∞(w)) log

(
1

δ

)}
≤ δ.

Proof. Recall that
√
ℓ′′(xTw)x = H

1/2
∞ (w)z, so that ∥

√
ℓ′′(xTw)x∥2

Hρ
∞(w)−1 = ∥z∥2

Dρ
∞

. As z is

ν-sub-Gaussian and trace(Dρ
∞) = dρeff(H∞(w)), Theorem 2.1 of [82] with Σ = Dρ

∞ implies that

P
{
∥z∥2Dρ

∞
> ν2

(
dρeff(H∞(w)) + 2

√
dρeff(H(w))t + 2t

)}
≤ exp(−t).

Setting t = d̄ρeff(Hρ
∞(w)) log(1/δ), we obtain the desired claim with C = 5ν2.

Lemma 4.8.4 (Empirical Hessian concentration). Suppose n = Ω̃
[
d̄ρeff(H∞(w)) log(n/δ)

]
, then∥∥∥Hρ

∞(w)−1/2 [H(w)−H∞(w)]Hρ
∞(w)−1/2

∥∥∥ ≤ 1/2,

with probability at least 1− δ/n.

Proof. We begin by writing

Hρ
∞(w)−1/2 [H(w)−H∞(w)]Hρ

∞(w)−1/2 =
1

n

n∑
i=1

(
ZiZ

T
i −Dρ

∞
)
.

where Zi = Hρ
∞(w)−1/2

√
ℓ′′(xTw)xi and Dρ

∞ = Hρ
∞(w)−1/2H∞(w)Hρ

∞(w)−1/2. Set Xi = 1
n

(
ZiZ

T
i −Dρ

∞
)
,

and observe that E[Xi] = 0. We seek to apply Lemma 4.8.2, to this end observe that Lemma 4.8.3

implies

max
i∈[n]

P

(∥∥∥∥√ℓ′′(xT
i w)xi

∥∥∥∥2
Hρ

∞(w)−1

> Cd̄ρeff(H∞(w)) log

(
2n

δ

))
≤ δ

2n2
.

Consequently, we obtain the following bounds on ∥Xi∥ and E[X2
i]:

∥Xi∥ =
1

n
max

{
λmax

(
ZiZ

T
i −Dρ

∞
)
,−λmin

(
ZiZ

T
i −Dρ

∞
)}

≤ 1

n
max

{
∥Zi∥2, λmax(Dρ

∞)
}
≤ 1

n
max{∥Zi∥2, 1}

=
1

n
max

{∥∥∥∥√ℓ′′(xTw)xi

∥∥∥∥2
Hρ

∞(w)−1

, 1

}
≤ Cd̄ρeff(H∞(w)) log

(
2n
δ

)
n

,

and

E[X2
i] =

1

n2
E[∥Zi∥2ZiZ

T
i] ⪯ Cd̄ρeff(H∞(w)) log

(
2n
δ

)
n2

Dρ
∞,

CHAPTER 4. SKETCHYSGD 115

Hence setting β = Cd̄ρeff(H∞(w)) log
(
2n
δ

)
and Vi = βD∞

ρ , it follows immediately from the preceding

considerations that

max
i∈[n]

P
(
∥Xi∥ ≤ β/n,E[X2

i] ⪯ 1

n2
Vi

)
≥ 1− δ/(2n2).

As V1 = V2 = V = βDρ
∞/n, it follows that ∥V∥ ≤ β/n. Moreover,

trace(V)/∥V∥ = trace(V)/∥V ∥ = trace(Dρ
∞)/∥Dρ

∞∥
= dρeff(H∞(w)) [1 + ρ/λ1(H∞(w))] ≤ 2dρeff(H∞(w)),

where the last inequality follows as ρ ≤ λ1(H∞(w)). Thus, we can invoke Lemma 4.8.2 with

t = C


√√√√β log

(
dρ
eff(H∞(w))

δ

)
n

+
β log

(
dρ
eff(H∞(w))

δ

)
n

 ,

to reach with probability at least 1− δ/(2n) that∥∥∥Hρ
∞(w)−1/2 [H(w)−H∞(w)]Hρ

∞(w)−1/2
∥∥∥

≤ C


√√√√β log

(
dρ
eff(H∞(w))

δ

)
n

+
β log

(
dρ
eff(H∞(w))

δ

)
n

 .

Recalling β = O
(
d̄ρeff(H∞(w)) log

(
n
δ

))
and n = Ω

(
d̄ρeff(H∞(w)) log

(
dρ
eff(H∞(w))

δ

)
log
(
n
δ

))
, we con-

clude from the last display that

P
(∥∥∥Hρ

∞(w)−1/2 [H(w)−H∞(w)]Hρ
∞(w)−1/2

∥∥∥ ≤ 1/2
)
≥ 1− δ/(2n).

Proof of Proposition 4.4.7

Proof. Let Zi = Hρ
∞(w)−1/2

√
ℓ′′(xT

i w)xi and observe the hypotheses on n, combined with Lemma 4.8.3

and Lemma 4.8.4 imply that

P
(

max
i∈[n]
∥Zi∥2 ≤ Cd̄ρeff(H∞(w)) log

(n
δ

)
,

1

2
Hρ

∞(w) ⪯ Hρ(w) ⪯ 3

2
Hρ

∞(w)

)
≥ 1− δ/n.

CHAPTER 4. SKETCHYSGD 116

Combining the previous relation with matrix similarity, we find

λ1

(
Hρ(w)−1/2∇2fρ

i (w)Hρ(w)−1/2
)

=
(
∇2fρ

i (w)1/2Hρ(w)−1∇2fρ
i (w)1/2

)
≤ 2

(
∇2fρ

i (w)1/2Hρ
∞(w)−1∇2fρ

i (w)1/2
)

= 2λ1

(
Hρ

∞(w)−1/2∇2fρ
i (w)Hρ

∞(w)−1/2
)

≤ 2 + 2λ1

(
Hρ

∞(w)−1/2∇2fi(w)Hρ
∞(w)−1/2

)
= 2 + 2λ1(ZiZ

T
i) = 2 + 2 ∥Zi∥2

≤ Cd̄ρeff(H∞(w)) log
(n
δ

)
.

Recalling that τρ(H(w)) = maxi∈[n] λ1

(
Hρ(w)−1/2∇2fρ

i (w)Hρ(w)−1/2
)
, the last display and a union

bound yield

P
(
τρ(H(w)) ≤ Cd̄ρeff(H∞(w)) log

(n
δ

))
≥ 1− δ,

as desired.

4.8.5 Proof of Lemma 4.4.8

Proof. The result is a consequence of a standard application of the intrinsic dimension Matrix Bern-

stein inequality. Indeed, let Dρ = (H(w) + ρI)−1/2H(w)(H(w) + ρI)−1/2 and Xi = 1
bh

(
ZiZ

T
i −Dρ

)
,

where Zi = (H(w) + ρI)−1/2∇2fi(w)1/2. Observe that E[Xi] = 0, and set X =
∑

i Xi. To see that

the conditions of the intrinsic dimension Matrix Bernstein inequality are met, note that Xi and

E[X2] satisfy

∥Xi∥ =
1

bh
∥Zi∥2 ≤

τρ(H(w))

bh
,

E[X2] ⪯ 1

b2h

∑
i

E[∥zi∥2zizTi] ⪯ τρ(H(w))

bh
Dρ := V.

Moreover as ρ ≤ λ1(H(w)),

tr(V)/∥V∥ ≤ 2dρeff(H(w)).

Thus, the intrinsic dimension Matrix Bernstein inequality [163, Theorem 7.3.1] implies

P {∥X∥ ≥ t} ≤ 8dρeff(H(w)) exp

(
− bht

2/2

τρ(H(w)) (1 + t/3)

)
,

for all t ≥
√
τρ(H(w))/bh + τρ(H(w))/(3bh). So, setting

t =

√√√√4τρ(H(w)) log
(

8dρ
eff(H(w))

δ

)
bh

+
4

3bh
τρ(H(w)) log

(
8dρeff(H(w))

δ

)
,

CHAPTER 4. SKETCHYSGD 117

and bh = O

 τρ(H(w)) log

(
d
ρ
eff

(H(w))

δ

)
ζ2

, it holds that

P
(
∥X∥ ≤ ζ

1 + ζ

)
≥ 1− δ.

This last display immediately implies that(
1− ζ

1 + ζ

)
Hρ(w) ⪯ Hρ

S(w) ⪯
(

1 +
ζ

1 + ζ

)
Hρ(w),

which is equivalent to (
1 +

ζ

1 + ζ

)−1

Hρ
S ⪯ Hρ ⪯

(
1− ζ

1 + ζ

)−1

Hρ
S .

The desired claim now follows from the last display, upon observing that

1− ζ ≤
(

1 +
ζ

1 + ζ

)−1

≤
(

1− ζ

1 + ζ

)−1

= 1 + ζ.

4.8.6 Proof of Proposition 4.4.9 and Corollary 4.4.12

Proof of Proposition 4.4.9

Proof. Let E = HS − ĤS , and note that E ⪰ 0 by Lemma 2.2.1. Now by our hypothesis on r, it

follows from Lemma 3.7.4, that

P (∥E∥ ≤ ζρ/4) ≥ 1− δ/2.

Using the decomposition Hρ
S = P + E, we apply Weyl’s inequalities to find

λ1(P−1/2Hρ
SP

−1/2) ≤ λ1

(
P−1/2Ĥρ

SP
−1/2

)
+ λ1

(
P−1/2EP−1/2

)
=

1 + ∥P−1/2EP−1/2∥ ≤ 1 + ∥P−1∥∥E∥ ≤ 1 +
∥E∥
ρ
≤ 1 + ζ/4.

Moreover as E ⪰ 0 we have Hρ
S ⪰ P , so conjugation yields P−1/2Hρ

SP
−1/2 ⪰ Ip. The preceding

inequality immediately yields λp(P−1/2Hρ
SP

−1/2) ≥ 1. Hence

1 ≤ λp(P−1/2Hρ
SP

−1/2) ≤ λ1(P−1/2Hρ
SP

−1/2) ≤ 1 + ζ/4.

CHAPTER 4. SKETCHYSGD 118

As an immediate consequence of this last display, we obtain the Loewner ordering relation

P ⪯ Hρ
S ⪯ (1 + ζ/4)P.

Now, Lemma 4.4.8 and a union bound implies that

P (P ⪯ Hρ
S ⪯ (1 + ζ/4)P, (1− ζ/4)Hρ

S ⪯ Hρ ⪯ (1 + ζ/4)Hρ
S) ≥ 1− δ.

Combining these relations and using that (1 + ζ/4)2 ≤ 1 + ζ for ζ ∈ (0, 1), we find

(1− ζ)P ⪯ Hρ ⪯ (1 + ζ)P.

To conclude, note that (1 + ρ/µ)Hρ ⪯ H ⪯ Hρ, which combined with the last display implies

(1− ζ)
1

1 + ρ/µ
P ⪯ H ⪯ (1 + ζ)P.

4.8.7 Proof of Lemma 4.4.14

Proof. The function f is smooth and strongly convex, so it is quadratically regular. Consequently,

f(w) ≥ f(w⋆) +
γ̂ℓ
2
∥w − w⋆∥2H(wP).

Hence we have

f(w)− f(w⋆) ≥ γℓ
2

(1− ζ)
1

1 + ρ/µ
∥w − w⋆∥2P ,

where in the last inequality we have used the hypothesis that the conclusion of Proposition 4.4.9

holds. The claim now follows by recalling that γ̂ℓ = (1−ζ)µ
µ+ρ γℓ.

4.8.8 Proof of Proposition 4.4.10

In this subsection we prove Proposition 4.4.10, which controls the variance of the preconditioned mini-

batch gradient. We start by proving the following more general result, from which Proposition 4.4.10

follows immediately.

Proposition 4.8.5 (Expected smoothness in the dual-norm). Suppose that each fi is convex and

satisfies

fi(w + h) ≤ fi(w) + ⟨gi(w), h⟩+
Li

2
∥h∥2Mi

, ∀w, h ∈ Rp,

CHAPTER 4. SKETCHYSGD 119

for some symmetric positive definite matrix Mi. Moreover, let f satisfy

f(w + h) ≤ f(w) + ⟨g(w), h⟩+
L

2
∥h∥2M , ∀w, h ∈ Rp,

where M = 1
n

∑n
i=1 Mi. Define τ(M) := max1≤i≤n λ1

(
M−1/2MiM

−1/2
)
. Further, suppose we

construct the gradient sample gB(w) with batch-size bg. Then for every w ∈ Rp

EB∥gB(w)− gB(w′)∥2M−1 ≤ 2LM (f(w)− f(w′)− ⟨g(w′), w − w′⟩),

EB∥gB(w)∥2M−1 ≤ 4LM (f(w)− f(w⋆)) + 2σ2
M ,

where

LM =
n(bg − 1)

bg(n− 1)
L + τ(M)

n− bg
bg(n− 1)

max1≤i≤nLi,

and

σ2
M =

n− bg
bg(n− 1)

1

n

n∑
i=1

∥∇fi(w⋆)∥2M−1 .

Proof. Introduce the change of variable w = M−1/2z, so that fi(w) = fi(M
−1/2z) = fi,M (z) and

f(w) = f(M−1/2z) = fM (z). Then by our hypotheses on the fi’s, f , and the definition of τ(M), we

have that for all z, h ∈ Rp

fi,M (z + h) ≤ fi,M (z) + ⟨gi,M (z), h⟩+
τ(M)Li

2
∥h∥2,

fM (z + h) ≤ fM (z) + ⟨gM (z), h⟩+
L

2
∥h∥2.

Consequently, Proposition 3.8 of [72] implies

E∥gB,M (z)− gB,M (z′)∥2 ≤ 2LM (fM (z)− fM (z)− ⟨gM (z′), z − z′⟩) ,

E∥gB,M (z⋆)∥2 =
n− bg

bg(n− 1)

1

n

n∑
i=1

∥gM,i(z⋆)∥2,

where LM =
n(bg−1)
bg(n−1)L+ τ(M)

n−bg
bg(n−1)max1≤i≤nLi. Invoking Lemma 4.8.1, the above displays become

E∥gB(w)− gB(w′)∥2M−1 ≤ 2LM (f(w)− f(w′)− ⟨g(w′), w − w′⟩) ,

E∥gB(w⋆)∥2M−1 =
n− bg

bg(n− 1)

1

n

n∑
i=1

∥gi(w⋆)∥2M−1 = σ2.

The last portion of the desired claim now follows by combining the preceding displays with w′ = w⋆,

and the identity E∥a∥2M−1 ≤ 2E∥a− b∥2M−1 + 2E∥b∥2M−1 .

CHAPTER 4. SKETCHYSGD 120

Proof of Proposition 4.4.10

Proof. Set Mi = P so that M = Hρ(wP). Now, by the assumption that H(wP) ⪯ (1 + ζ)P and item

1 of Lemma 4.4.4 it holds that each fi is smooth with respect to Mi with Li = (1 + ζ)τρH(wP)γρ
i,u,

while f is smooth with respect to M with L = (1 + ζ)γρ
u. Noting that τ(M) = 1, the claim follows

from Proposition 4.8.5.

4.9 Lower bound on condition number in Table 4.2

Recall the condition number κ is given by

κ =
supw∈Rp λ1(H(w))

infw∈Rp λp(H(w))
.

Consequently when f is a the least-squares or logistic loss with data matrix A, and l2-regularization

µ ≥ 0, it holds for any r ≤ p that

κ ≥ λ1(H(0))

λp(H(0))
≥ λ1(H(0))

λr(H(0))
=

σ2
1(A)/n + µ

σ2
r(A)/n + µ

.

Hence κ is lower bounded by (σ2
1(A)/n + µ)/(σ2

r(A)/n + µ). Table 4.2 gives the numerical value for

this lower bound for r = 100.

4.10 Experimental details

Here we provide more details regarding the experiments in Section 4.5.

Regularization For convex problems (Sections 4.5.1 to 4.5.4 and 4.11.4), we set the l2-regularization

to 10−2/ntr, where ntr is the size of the training set. For deep learning (Section 4.5.5), we use no

regularization or weight decay, as the experiments are proof-of-concept.

Ridge regression datasets The ridge regression experiments are run on the datasets described

in the main text. E2006-tfidf and YearPredictionMSD’s rows are normalized to have unit-norm,

while we standardize the features of yolanda. For YearPredictionMSD we use a ReLU random

features transformation that gives us 4367 features in total. For yolanda we use a random features

transformation with bandwidth 1 that gives us 1000 features in total, and perform a random 80-20

split to form a training and test set. In Table 4.4, we provide the dimensions of the datasets, where

ntr is the number of training samples, ntest is the number of testing samples, and p is the number of

features.

CHAPTER 4. SKETCHYSGD 121

Table 4.4: Dimensions of ridge regression datasets.

Dataset ntr ntest p
E2006-tfidf 16087 3308 150360

YearPredictionMSD 463715 51630 4367
yolanda 320000 80000 1000

Logistic regression datasets The logistic regression experiments are run on the datasets described

in the main text. All datasets’ rows are normalized so that they have unit norm. For ijcnn1 and susy

we use a random features transformation with bandwidth 1 that gives us 2500 and 1000 features,

respectively. For real-sim, we use a random 80-20 split to form a training and test set. For HIGGS,

we repeatedly apply a random features transformation with bandwidth 1 to obtain 10000 features, as

described in Section 4.5.4. In Table 4.5, we provide the dimensions of the datasets, where ntr is the

number of training samples, ntest is the number of testing samples, and p is the number of features.

Table 4.5: Dimensions of logistic regression datasets.

Dataset ntr ntest p
ijcnn1 49990 91701 2500
susy 4500000 500000 1000

real-sim 57847 14462 20958
HIGGS 10500000 500000 10000

Deep learning datasets The deep experiments are run on the datasets described in the main text.

We download the datasets using the OpenML-Python connector [54]. Each dataset is standardized

to have zero mean and unit variance, and the statistics for standardization are calculated using only

the training split. In Table 4.6, we provide the dimensions of the datasets, where n is the number of

samples (before splitting into training, validation, and test sets), p is the number of features, and ID

is the unique identifier of the dataset on OpenML.

Dataset augmentation for scaling (Sections 4.5.2 and 4.5.3) We perform data augmentation

before any additional preprocessing steps (e.g., normalization, standardization, random features).

To increase the samples by a factor of k, we duplicate the dataset a total of k − 1 times. For each

duplicate, we generate a random Gaussian matrix, where each element has variance 0.02. For sparse

datasets, this Gaussian matrix is generated to have the same number of nonzeros as the original

dataset. Each duplicate and Gaussian matrix is summed; the resulting sums are stacked to form the

augmented dataset.

CHAPTER 4. SKETCHYSGD 122

Table 4.6: Dimensions of deep learning datasets.

Dataset n p ID
Fashion-MNIST 70000 784 40996
Devnagari-Script 92000 1024 40923

volkert 58310 180 41166

Random seeds In Sections 4.5.1, 4.11.1 and 4.11.4 we run all experiments with 10 random seeds,

with the exception of susy, for which we use 3 random seeds.

We use the same number of random seeds in Section 4.5.2, except for the scaling experiments.

For the scaling experiments, we only use 3 random seeds.

In Section 4.5.4 we use only 1 random seed due to the sheer size of the problem.

In Section 4.5.5 we use only 1 random seed for each learning rate given by random search. However,

we use 10 random seeds to generate the results with the tuned learning rate.

Additional hyperparameters (Sections 4.5.1 and 4.5.4) For SVRG we perform a full gradient

computation at every epoch.

For L-Katyusha, we initialize the update probability pupd = bg/ntr to ensure the average number

of iterations between full gradient computations is equal to one epoch. We follow [94] and set µ equal

to the l2-regularization parameter, σ = µ
L , θ1 = min{

√
2σntr/3, 1

2}, and θ2 = 1
2 .

All algorithms use a batch size of 256 for computing stochastic gradients, except on the HIGGS

dataset. For the HIGGS dataset, SGD, SAGA, and SketchySGD are all run with a batch size of 4096.

Additional hyperparameters (Section 4.5.2) For SLBFGS we perform a full gradient com-

putation at every epoch. Furthermore, we update the inverse Hessian approximation every epoch

and set the Hessian batch size to
√
ntr, which matches the Hessian batch size hyperparameter in

SketchySGD. In addition, we follow [116] and set the memory size of SLFBGS to 10. We use a batch

size of 256 for computing stochastic gradients.

We use the defaults for L-BFGS provided in the SciPy implementation, only tuning the “factr”

parameter when necessary to avoid early termination.

For RSN, we grid search the sketch size in {250, 500, 750, 1000}.
For Newton Sketch, we grid search the sketch size in {2 · 10−3 ·min(ntr, p) · 50k/9 : k = 0, 1, . . . , 9}.
For RSN and Newton Sketch, we follow the original publications’ suggestions [71, 132] for setting

the line search parameters.

Additional hyperparameters (Section 4.5.3) We grid search the sketch size in {2 · 10−3 ·
min(ntr, p) · 50k/9 : k = 0, 1, . . . , 9} for all three of NyströmPCG, GaussPCG, and SparsePCG.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

CHAPTER 4. SKETCHYSGD 123

Additional hyperparameters (Section 4.5.5) For all of the competitor methods (except

Shampoo), we use the default hyperparameters. For Shampoo, we modify the preconditioner update

frequency to occur every epoch, similar to SketchySGD. For SketchySGD, we set the momentum

parameter β to 0.9, just as in Adam. We compute stochastic gradients using a batch size of 128. For

learning rate scheduling, we use cosine annealing with restarts. For the restarts, we use an initial

budget of 15 epochs, with a budget multiplier of 2.

Default hyperparameters for SAGA/SVRG/L-Katyusha The theoretical analysis of SVRG,

SAGA, and L-Katyusha all yield recommended learning rates that lead to linear convergence. In

practical implementations such as scikit-learn [131], these recommendations are often taken as the

default learning rate. For SAGA, we follow the scikit-learn implementation, which uses the following

learning rate:

η = max

{
1

3L
,

1

2 (L + ntrµ)

}
,

where L is the smoothness constant of f and µ is the strong convexity constant. The theoretical

analysis of SVRG suggests a step-size of η = 1
10L , where L is the expected-smoothness constant. We

have found this setting to pessimistic relative to the SAGA default, so we use the same default for

SVRG as we do for SAGA. For L-Katyusha the hyperparameters θ1 and θ2 are controlled by how we

specify L−1, the reciprocal of the smoothness constant. Thus, the default hyperparameters for all

methods are controlled by how L is specified.

Now, standard computations show that the smoothness constants for least-squares and logistic

regression satisfy

Lleast-squares ≤
1

ntr

ntr∑
i=1

∥ai∥2,

Llogistic ≤
1

4ntr

ntr∑
i=1

∥ai∥2.

The scikit-learn software package uses the preceding upper-bounds in place of L to set η in their

implementation of SAGA. We adopt this convention for setting the hyperparameters of SAGA, SVRG

and L-Katyusha. We display the defaults for the three methods in Table 4.7.

Table 4.7: Default hyperparameters for SVRG/SAGA/L-Katyusha.

Method\Dataset E2006-tfidf YearPredictionMSD yolanda ijcnn1 real-sim susy HIGGS

SVRG/SAGA 4.95 · 10−1 1.01 · 100 4.96 · 10−1 1.91 · 100 1.93 · 100 1.87 · 100 1.93 · 100
L-Katyusha 1.00 · 100 4.85 · 10−1 9.98 · 10−1 2.52 · 10−1 2.50 · 10−1 2.57 · 10−1 N/A

Grid search parameters (Sections 4.5.1 and 4.5.2) We choose the grid search ranges for

SVRG, SAGA, and L-Katyusha to (approximately) include the default hyperparameters across the

tested datasets (Table 4.7). For ridge regression, we set [10−3, 102] as the search range for the

CHAPTER 4. SKETCHYSGD 124

learning rate in SVRG and SAGA, and [10−2, 100] as the search range for the smoothness parameter

L in L-Katyusha. Similar to SVRG and SAGA, we set [10−3, 102] as the search range for SGD. For

SLBFGS, we set the search range to be [10−5, 100] in order to have the same log-width as the search

range for SGD, SVRG, and SAGA. In logistic regression, the search ranges for SGD/SVRG/SAGA,

L-Katyusha, and SLBFGS become [4 · 10−3, 4 · 102], [2.5 · 10−3, 2.5 · 10−1], and [4 · 10−5, 4 · 100],

respectively. The grid corresponding to each range samples 10 equally spaced values in log space.

The tuned hyperparmeters for all methods across each dataset are presented in Table 4.8.

Table 4.8: Tuned hyperparameters for competitor methods.

Method\Dataset E2006-tfidf YearPredictionMSD-rf yolanda-rf ijcnn1-rf real-sim susy-rf

SGD 5.99 · 10−1 2.15 · 100 5.99 · 10−1 8.62 · 100 4 · 102 8.62 · 100
SVRG 5.99 · 10−1 2.15 · 100 2.15 · 100 8.62 · 100 4 · 102 8.62 · 100
SAGA 5.99 · 10−1 2.15 · 100 2.15 · 100 8.62 · 100 4 · 102 8.62 · 100

L-Katyusha 2.15 · 10−1 1.29 · 10−1 2.15 · 10−1 1.94 · 10−2 2.5 · 10−3 3.32 · 10−2

SLBFGS 7.74 · 10−2 2.15 · 10−2 1.67 · 10−3 1.11 · 100 8.62 · 10−2 8.62 · 10−2

Grid search parameters (Section 4.5.4) Instead of using a search range of [4 · 10−3, 4 · 102]

for SGD/SAGA, we narrow the range to [4 · 10−2, 4 · 101] and sample 4 equally spaced values in log

space. The reason for reducing the search range and grid size is to reduce the total computational

cost of running the experiments on the HIGGS dataset. Furthermore, we find that 4 · 100 is the best

learning rate for HIGGS, while 4 · 101 leads to non-convergent behavior, meaning these search ranges

are appropriate.

Random search parameters (Section 4.5.5) We tune the learning rate for each optimizer

using 30 random search trials with log-uniform sampling in the range [10−3, 10−1]. The tuning is

performed with Optuna [2].

4.11 Additional experimental results and figures

4.11.1 Sensitivity experiments

In this section, we investigate the sensitivity of SketchySGD to the rank hyperparameter r (Sec-

tion 4.11.2) and update frequency hyperparameter u (Section 4.11.3). In the first set of sensitivity

experiments, we select ranks r ∈ {1, 2, 5, 10, 20, 50} while holding the update frequency fixed at

u =
⌈
ntr

bg

⌉
(1 epoch)6. In the second set of sensitivity experiments, we select update frequencies

u ∈
{

0.5
⌈
ntr

bg

⌉
,
⌈
ntr

bg

⌉
, 2
⌈
ntr

bg

⌉
, 5
⌈
ntr

bg

⌉
,∞
}

, while holding the rank fixed at r = 10. We use the

6If we set u = ∞ in ridge regression, which fixes the preconditioner throughout the run of SketchySGD, the potential
gain from a larger rank r may not be realized due to a poor initial Hessian approximation.

CHAPTER 4. SKETCHYSGD 125

datasets from Table 4.2. Each curve is the median performance of a given (r, u) pair across 10 random

seeds (except for susy, which uses 3 seeds), run for 40 epochs.

4.11.2 Effects of changing the rank

Looking at Figure 4.12, we see two distinct patterns: either increasing the rank has no noticeable

impact on performance (E2006-tfidf, real-sim), or increasing the rank leads to faster convergence

to a ball of noise around the optimum (YearPredictionMSD-rf). We empirically observe that these

patterns are related to the spectrum of each dataset, as shown in Figure 4.13. For example, the

spectrum of E2006-tfidf is highly concentrated in the first singular value, and decays rapidly, increased

rank does not improve convergence. On the other hand, the spectrum of YearPredictionMSD-rf is

not as concentrated in the first singular value, but still decays rapidly, so convergence improves as

we increase the rank from r = 1 to r = 10, after which performance no longer improves, in fact

it slightly degrades. The spectrum of real-sim decays quite slowly in comparison to E2006-tfidf or

YearPredictionMSD-rf, so increasing the rank up to 50 does not capture enough of the spectrum to

improve convergence. One downside in increasing the rank is that the quantity ηSketchySGD (4.3) can

become large, leading to SketchySGD taking a larger step size. As a result, SketchySGD oscillates

more about the optimum, as seen in YearPredictionMSD-rf (Figure 4.12). Last, Figure 4.12 shows

r = 10 delivers great performance across all datasets, supporting its position as the recommended

default rank. Rank sensitivity plots for yolanda-rf, ijcnn1-rf, and susy-rf appear in Section 4.11.1.

0 10 20 30 40
Epochs

1.4

2.0
×10−1 e2006

0 10 20 30 40
Epochs

5.0

6.0
×101 yearpredictionmsd-rf

0 10 20 30 40
Epochs

0.2

1.0
×10−1 real-sim

T
ra

in
in

g
L

os
s

r = 1 r = 2 r = 5 r = 10 r = 20 r = 50

Figure 4.12: Sensitivity of SketchySGD to rank r.

4.11.3 Effects of changing the update frequency

In this section, we display results only for logistic regression (Figure 4.14), since there is no benefit

to updating the preconditioner for a quadratic problem such as ridge regression (Section 4.11.1): the

Hessian in ridge regression is constant for all w ∈ Rp. The impact of the update frequency depends

CHAPTER 4. SKETCHYSGD 126

0 20 40 60 80 100
k

10−2

10−1

100

101

102

103

σ
k

e2006

yearpredictionmsd-rf

real-sim

yolanda-rf

ijcnn1-rf

susy-rf

Figure 4.13: Top 100 singular values of datasets after preprocessing.

on the spectrum of each dataset. The spectra of ijcnn1-rf and susy-rf are highly concentrated in

the top r = 10 singular values and decay rapidly (Figure 4.13), so even the initial preconditioner

approximates the curvature of the loss well throughout optimization. On the other hand, the spectrum

of real-sim decays quite slowly, and the initial preconditioner does not capture most of the curvature

information in the Hessian. Hence for real-sim it is beneficial to update the preconditioner, however

only infrequent updating is required, as an update frequency of 5 epochs yields almost identical

performance to updating every half epoch. So, increasing the update frequency of the preconditioner

past a certain threshold does not improve performance, it just increases the computational cost of the

algorithm. Last, u = ⌈ntr

bg
⌉ exhibits consistent excellent performance across all datasets, supporting

the recommendation that it be the default update frequency.

0 10 20 30 40
Epochs

2.7

3.2
×10−1 ijcnn1-rf

0 10 20 30 40
Epochs

4.5

5.0
×10−1 susy-rf

0 10 20 30 40
Epochs

0.2

1.0
×10−1 real-sim

T
ra

in
in

g
L

os
s

u = 0.5 u = 1.0 u = 2.0 u = 5.0 u = ∞

Figure 4.14: Sensitivity of SketchySGD to update frequency u.

CHAPTER 4. SKETCHYSGD 127

0 10 20 30 40
Full gradient evaluations

0.14

0.16

0.18

0.20

0.22

0.24

T
ra

in
in

g
L

os
s

e2006

Adaptive SGD

SketchySGD

0 10 20 30 40
Full gradient evaluations

0.20

0.25

0.30

0.35

0.40

T
ra

in
in

g
L

os
s

ijcnn1-rf

Adaptive SGD

SketchySGD

Figure 4.15: Adaptive SGD vs. SketchySGD. Adaptive SGD performs much worse then SketchySGD
on these two problems, despite employing the same learning rate strategy as SketchySGD. Thus,
SketchySGD’s improved performance over SGD comes from incorporating preconditioning, and not
from how it sets the learning rate.

4.11.4 SketchySGD default learning rate ablation

It is natural to ask how much of SketchySGD’s improved performance relative to SGD stems from

preconditioning. Indeed, it may be the case that SketchySGD’s gains arise from how it sets the

learning rate, and not from using approximate second-order information. To test this, we employ

SGD with the same learning rate selection strategy as SketchySGD, but with the preconditioned

minibatch Hessian replaced by the minibatch Hessian. We refer to this algorithm as Adaptive SGD

(AdaSGD).

Figure 4.15 shows the results of AdaSGD and SketchySGD on the E2006-tfidf and ijcnn1-rf

datasets. Adaptive SGD performs significantly worse then SketchySGD on these two problems, which

shows that SketchySGD’s superior performance over SGD is due to employing preconditioning. This

result is not too surprising. To see why, let us consider the case of the least-squares loss. In this

setting, if the subsampled Hessian is representative of the true Hessian, then ηAdaSGD ≈ O(1/L).

Hence when the problem is ill-conditioned, the resulting stepsize will result in poor progress, which

is precisely what is observed in Figure 4.15.

4.11.5 SketchySGD improves the conditioning of the Hessian

In Section 4.5.1, we showed that SketchySGD generally converges faster than other first-order

stochastic optimization methods. In this section, we examine the conditioning of the Hessian before

and after preconditioning to understand why SketchySGD displays these improvements.

Recall from Section 4.1.1 that SketchySGD is equivalent to performing SGD in a preconditioned

space induced by Pj = ĤSj
+ ρI. Within this preconditioned space, the Hessian is given by

P
−1/2
j HP

−1/2
j , where H is the Hessian in the original space. Thus, if κ(P

−1/2
j HP

−1/2
j)≪ κ(H), we

know that SketchySGD is improving the conditioning of the Hessian, which allows SketchySGD to

converge faster.

CHAPTER 4. SKETCHYSGD 128

Figures 4.16 and 4.17 display the top 500 eigenvalues (normalized by the largest eigenvalue) of

the Hessian H and the preconditioned Hessian P
−1/2
j HP

−1/2
j at the initialization of SketchySGD

(Nyström) for both logistic and ridge regression. With the exception of real-sim, SketchySGD

(Nyström) improves the conditioning of the Hessian by several orders of magnitude. This improved

conditioning aligns with the improved convergence that is observed on the ijcnn1-rf, susy-rf, E2006-

tfidf, YearPredictionMSD-rf, and yolanda-rf datasets in Section 4.5.1.

4.12 Scaling experiments

4.12.1 Second-order

For larger datasets, we expect the performance gap between SketchySGD and the selected second-

order methods to grow even larger, since these methods require full-gradient computations. We

increase the number of samples for each dataset in Table 4.2 (with the exception of susy-rf) by a

factor of 3 using data augmentation with Gaussian random noise, i.e., a dataset of size ntr × p now

has size 3ntr × p. The results are shown in Figures 4.18 and 4.19. When looking at performance with

respect to wall-clock time, SketchySGD is outperformed less often by the second-order methods; it

is only outperformed by SLBFGS (before it diverges) on ijcnn1-rf and RSN on yolanda-rf. Again,

SketchySGD performs much better than the competition on YearPredictionMSD-rf, which is a larger,

dense dataset.

4.12.2 PCG

The main costs of PCG are generally in (i) computing the preconditioner and (ii) performing matrix-

vector products with the data matrix. For larger datasets, we expect both of these costs to increase,

which should close the performance gap between SketchySGD and PCG. We increase the number of

samples for each ridge regression dataset by a factor of 3 as in Section 4.5.2; the results on these

augmented datasets are presented in Figure 4.20. We see that the performance gap closes slightly —

on E2006-tfidf, SketchySGD now performs comparably to JacobiPCG. In addition, the PCG methods

now take significantly more wall-clock time to reach the training loss attained by SketchySGD.

CHAPTER 4. SKETCHYSGD 129

0 200 400
k

10−5

10−3

10−1

ijcnn1-rf, epoch 0

0 200 400
k

10−1

100
real-sim, epoch 0

0 200 400
k

10−6

10−3

100
susy-rf, epoch 0

λ
k
+

1
/λ

1

Hessian Preconditioned Hessian

0 200 400
k

10−4

10−2

100
ijcnn1-rf, epoch 10

0 200 400
k

10−1

100
real-sim, epoch 10

0 200 400
k

10−6

10−3

100
susy-rf, epoch 10

λ
k
+

1
/λ

1

Hessian Preconditioned Hessian

0 200 400
k

10−4

10−2

100
ijcnn1-rf, epoch 20

0 200 400
k

10−1

100
real-sim, epoch 20

0 200 400
k

10−6

10−3

100
susy-rf, epoch 20

λ
k
+

1
/λ

1

Hessian Preconditioned Hessian

0 200 400
k

10−4

10−2

100
ijcnn1-rf, epoch 30

0 200 400
k

10−1

100
real-sim, epoch 30

0 200 400
k

10−6

10−3

100
susy-rf, epoch 30

λ
k
+

1
/λ

1

Hessian Preconditioned Hessian

Figure 4.16: Spectrum of the Hessian at epochs 0, 10, 20, 30 before and after preconditioning in
l2-regularized logistic regression.

CHAPTER 4. SKETCHYSGD 130

0 200 400
k

10−5

10−3

10−1

e2006, epoch 0

0 200 400
k

10−4

10−2

100
yearpredictionmsd-rf, epoch 0

0 200 400
k

10−4

10−2

100
yolanda-rf, epoch 0

λ
k
+

1
/λ

1

Hessian Preconditioned Hessian

Figure 4.17: Normalized spectrum of the Hessian before and after preconditioning in ridge regression.

0 10 20 30
Wall-clock time (s)

2.0

5.0
×10−1 ijcnn1-rf

0 5 10 15 20
Wall-clock time (s)

0.1

1.0
×10−1 real-sim

0 10 20 30 40
Full gradient evaluations

2.0

5.0
×10−1 ijcnn1-rf

0 10 20 30 40
Full gradient evaluations

0.1

1.0
×10−1 real-sim

T
ra

in
in

g
L

os
s

L-BFGS

SLBFGS

RSN

Newton Sketch

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.18: Comparisons to second-order methods (L-BFGS, SLBFGS, RSN, Newton Sketch) on
l2-regularized logistic regression with augmented datasets.

CHAPTER 4. SKETCHYSGD 131

0 20 40
Wall-clock time (s)

0.5

5.0
×10−1 e2006

0 500 1000
Wall-clock time (s)

0.4

1.0
×102 yearpredictionmsd-rf

0 50 100 150 200
Wall-clock time (s)

3.6

4.5
×10−1 yolanda-rf

0 10 20 30 40
Full gradient evaluations

0.5

5.0
×10−1 e2006

0 10 20 30 40
Full gradient evaluations

0.4

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Full gradient evaluations

3.6

4.5
×10−1 yolanda-rf

T
ra

in
in

g
L

os
s

L-BFGS

SLBFGS

RSN

Newton Sketch

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.19: Comparisons to second-order methods (L-BFGS, SLBFGS, RSN, Newton Sketch) on
ridge regression with augmented datasets.

0 20 40
Wall-clock time (s)

0.5

5.0
×10−1 e2006

0 200 400 600 800
Wall-clock time (s)

0.4

1.0
×102 yearpredictionmsd-rf

0 50 100
Wall-clock time (s)

3.6

4.5
×10−1 yolanda-rf

0 10 20 30 40
Full gradient evaluations

0.5

5.0
×10−1 e2006

0 10 20 30 40
Full gradient evaluations

0.4

1.0
×102 yearpredictionmsd-rf

0 10 20 30 40
Full gradient evaluations

3.6

4.5
×10−1 yolanda-rf

T
ra

in
in

g
L

os
s

NyströmPCG

GaussPCG

SparsePCG

JacobiPCG

SketchySGD (Nyström)

SketchySGD (SSN)

Figure 4.20: Comparisons to PCG (Jacobi, Nyström, sketch-and-precondition w/ Gaussian and
sparse embeddings) on ridge regression with augmented datasets.

Chapter 5

Conclusions

5.1 Summary

This thesis introduces three novel algorithms for large-scale optimization: (i) Nyström PCG, (ii)

NysADMM, and (iii) SketchySGD. The unifying principle underlying these methods is the observa-

tion that data and Hessian matrices in large-scale optimization often exhibit approximate low-rank

structure, enabling efficient approximation through low-rank matrices computed via Randomized

Numerical Linear Algebra (RandNLA). From these low-rank approximations, we construct pre-

conditioners that bring the dominant eigenvalues closer to the level of the well-conditioned tail

eigenvalues. By leveraging this technique, Nyström PCG, NysADMM, and SketchySGD achieve

significant improvements over existing methods, in some cases yielding speed-ups of up to 58 times

faster than baseline approaches.

We anticipate these algorithms will prove valuable to practitioners seeking more efficient solutions

to large-scale optimization problems, while also providing a pathway to better address ill-conditioning

in this domain. Notably, Nyström PCG has been incorporated into the recent RandLAPACK

library [118], a highly optimized set of routines poised to serve as a fundamental backbone for

randomized linear algebra, analogous to LAPACK’s role in deterministic numerical linear algebra [7].

Looking ahead, we briefly discuss extensions of the ideas developed in this work and poten-

tial directions for future research, underscoring the broader impact and ongoing relevance of this

contribution to the field of large-scale optimization.

5.2 Extensions

The ideas developed in this thesis have several extensions, which have led to further improvements in

large-scale optimization, that we now discuss.

132

CHAPTER 5. CONCLUSIONS 133

For Nyström PCG in large-scale kernel kernel ridge regression, [42] employs a randomized

Nyström preconditioner constructed via column sampling, utilizing the Randomized Pivoted Cholesky

algorithm introduced in [31]. This approach reduces the preconditioner computation cost to O(nℓ2)

while maintaining similar theoretical guarantees.

The NysADMM paper leaves open the question of convergence for non-quadratic objectives, as

well as what the explict rate of convergence of the algorithm is. The follow-up paper [59] resolves

these questions, and establishes explicit convergence rates under standard regularity assumptions for

a more general version of the model problem in (3.1), which now includes linear equality constraints.

Notably, these results demonstrate that the approximations in NysADMM do not compromise the

overall global convergence rate. Building on this, [41] extends NysADMM to develop GeNIOS, a

highly optimized solver for general convex composite optimization problems with efficient proximal

and projection oracles. Extensive numerical experiments demonstrate GeNIOS outperforms state-of-

the-art open-source ADMM solvers like COSMO [62] and OSQP [155], as well as the commercial

interior-point based solver MOSEK [6].

SketchySGD is limited to modest accuracy solutions due to its use of stochastic gradients, [56]

addresses this limitation in smooth and strongly convex settings. By combining SketchySGD

principles with variance-reduced stochastic gradient algorithms like SVRG [86], SAGA [37], and

Katyusha [4], they achieve global linear convergence. Moreover, they demonstrate local linear

convergence independent of the condition number, highlighting the benefits of preconditioning.

For massive-scale kernel ridge regression where n > 106, PCG becomes prohibitive due to the

O(n2) cost of computing a matvec and the O(nℓ) storage required for the preconditioner. Inspired

by SketchySGD, the works [140,141] develop approximate versions of sketch-and-project based on

Nyström sketch-and-solve. These methods offer strong theoretical guarantees, outperform state-of-

the-art competitors, and can scale to datasets with over 108 training points.

5.3 Directions for future research

We conclude with a brief discussion of promising avenues for future work.

This thesis has developed scalable preconditioned algorithms that empirically improve convergence

and provably enhance it in certain special cases, such as when the objective is quadratic. An intriguing

direction for future research would be to develop similar algorithms that also improve the global rate

of convergence.

One possible approach for improving the global convergence of SketchySGD and its variance-

reduced variants [56], would be to change the base algorithm from Newton’s method to alternatives

such as the Hybrid Proximal Extragradient Algorithm (HPE). To obtain the best possible rate, it

is critical to incorporate acceleration into a stochastic HPE framework. A key challenge would be

determining how to adapt/generalize techniques such as Monteiro-Svaiter acceleration [28,115] to the

CHAPTER 5. CONCLUSIONS 134

stochastic setting. Recent work by [84] has shown an improved global convergence rate relative to

Newton’s method with linesearch, when using full gradients with a stochastic Hessian approximation

in the HPE algorithm, suggesting a promising direction for exploration.

An alternative route to establishing better global convergence rates, is to focus on more structured

function classes, as in [43,83,88], which develop fast second-order algorithms for quasi self-concordant

functions [12]. Applying the techniques developed in this thesis to obtain scalable stochastic analogues

of these algorithms that achieve improved global rates presents another interesting research direction.

A direction completely different from developing preconditioned algorithms that enjoy improved

global rates, is to develop more memory efficient preconditioned algorithms for deep learning. At

present the most popular deep learning optimizer is Adam, which uses momentum and a diagonal

preconditioner based on gradient whitening. However, recent work [89] has shown when properly

tuned, Shampoo can outperform Adam, demonstrating the benefit of using more sophisticated

preconditioners than diagonal ones. Unfortunately, Shampoo’s high memory requirements make it

prohibitively expensive for the large models used in production today [51]. An exciting challenge

would be to extend the techniques developed in this thesis to create a more memory-efficient version

of Shampoo while maintaining its performance advantages.

Bibliography

[1] Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence of

gradient methods for high-dimensional statistical recovery. The Annals of Statistics, 40(5):2452–

2482, 2012.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework, 2019.

[3] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical

guarantees. In Advances in Neural Information Processing Systems, 2015.

[4] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.

Journal of Machine Learning Research, 18(221):1–51, 2018.

[5] Idan Amir, Yair Carmon, Tomer Koren, and Roi Livni. Never go full batch (in stochastic

convex optimization). Advances in Neural Information Processing Systems, 34:25033–25043,

2021.

[6] Erling D Andersen and Knud D Andersen. The mosek interior point optimizer for linear pro-

gramming: an implementation of the homogeneous algorithm. In High performance optimization,

pages 197–232. Springer.

[7] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel, Jack

Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, and Danny

Sorensen. LAPACK users’ guide. SIAM, 1999.

[8] Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for

smooth convex optimization. Mathematical Programming, 178:327–360, 2019.

[9] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge regression

using sketching and preconditioning. SIAM Journal on Matrix Analysis and Applications,

38(4):1116–1138, 2017.

135

BIBLIOGRAPHY 136

[10] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging lapack’s

least-squares solver. SIAM Journal on Scientific Computing, 32(3):1217–1236, 2010.

[11] Owe Axelsson and Gunhild Lindskog. On the rate of convergence of the preconditioned

conjugate gradient method. Numerische Mathematik, 48:499–523, 1986.

[12] Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics,

4:384 – 414, 2010.

[13] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on

Learning Theory, 2013.

[14] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics

with deep learning. Nature Communications, 5(1), 2014.

[15] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods based

on probabilistic models. SIAM Journal on Optimization, 24(3):1238–1264, 2014.

[16] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[17] Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch l-bfgs method for machine

learning. Advances in Neural Information Processing Systems, 29, 2016.

[18] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

[19] Jose Blanchet, Coralia Cartis, Matt Menickelly, and Katya Scheinberg. Convergence rate

analysis of a stochastic trust-region method via supermartingales. INFORMS Journal on

Optimization, 1(2):92–119, 2019.

[20] Raghu Bollapragada, Richard H Byrd, and Jorge Nocedal. Exact and inexact subsampled

Newton methods for optimization. IMA Journal of Numerical Analysis, 39(2):545–578, 2019.

[21] Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter

Tang. A progressive batching l-bfgs method for machine learning. In International Conference

on Machine Learning, pages 620–629. PMLR, 2018.

[22] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. Advances in Neural

Information Processing Systems, 20, 2007.

[23] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-

mization and statistical learning via the alternating direction method of multipliers. Foundations

and Trends in Machine Learning, 3:1–122, 2011.

BIBLIOGRAPHY 137

[24] Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

[25] Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic Hes-

sian information in optimization methods for machine learning. SIAM Journal on Optimization,

21(3):977–995, 2011.

[26] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization.

Communications of the ACM, 55(6):111–119, 2012.

[27] Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive sampling.

Inverse problems, 23(3):969, 2007.

[28] Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and

adaptive monteiro-svaiter acceleration. Advances in Neural Information Processing Systems,

35:20338–20350, 2022.

[29] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM

transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[30] Jiabin Chen, Rui Yuan, Guillaume Garrigos, and Robert M Gower. SAN: stochastic average

Newton algorithm for minimizing finite sums. In International Conference on Artificial

Intelligence and Statistics, pages 279–318. PMLR, 2022.

[31] Yifan Chen, Ethan N Epperly, Joel A Tropp, and Robert J Webber. Randomly pivoted cholesky:

Practical approximation of a kernel matrix with few entry evaluations. Communications on

Pure and Applied Mathematics, 78(5):995–1041, 2025.

[32] Agniva Chowdhuri, Palma London, Haim Avron, and Petros Drineas. Speeding up linear

programming using randomized linear algebra. In Advances in Neural Information Processing

Systems, 2020.

[33] Agniva Chowdhury, Jiasen Yang, and Petros Drineas. Randomized iterative algorithms for

Fisher discriminant analysis. In Uncertainty in Artificial Intelligence, pages 239–249. PMLR,

2020.

[34] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input

sparsity time. Journal of the ACM (JACM), 63(6):1–45, 2017.

[35] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Di-

mensionality reduction for k-means clustering and low rank approximation. In ACM Symposium

on Theory of Computing, pages 163–172, 2015.

BIBLIOGRAPHY 138

[36] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate matrix product

in terms of stable rank. In 43rd International Colloquium on Automata, Languages, and

Programming, 2016.

[37] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient

method with support for non-strongly convex composite objectives. Advances in Neural

Information Processing Systems, 27, 2014.

[38] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances in Neural

Information Processing Systems, 2014.

[39] Michal Derezinski, Feynman T Liang, Zhenyu Liao, and Michael W Mahoney. Precise expressions

for random projections: Low-rank approximation and randomized Newton. In Advances in

Neural Information Processing Systems, volume 33, pages 18272–18283, 2020.

[40] Micha l Dereziński, Christopher Musco, and Jiaming Yang. Faster linear systems and matrix

norm approximation via multi-level sketched preconditioning. In Proceedings of the 2025 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1972–2004. SIAM, 2025.

[41] Theo Diamandis, Zachary Frangella, Shipu Zhao, Bartolomeo Stellato, and Madeleine Udell.

Genios: an (almost) second-order operator-splitting solver for large-scale convex optimization.

arXiv preprint arXiv:2310.08333, 2023.

[42] Mateo Dı́az, Ethan N Epperly, Zachary Frangella, Joel A Tropp, and Robert J Webber. Robust,

randomized preconditioning for kernel ridge regression. arXiv preprint arXiv:2304.12465, 2023.

[43] Nikita Doikov. Minimizing quasi-self-concordant functions by gradient regularization of newton

method. arXiv preprint arXiv:2308.14742, 2023.

[44] Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast

approximation of matrix coherence and statistical leverage. The Journal of Machine Learning

Research, 13(1):3475–3506, 2012.

[45] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[46] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[47] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[48] Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas—Rachford splitting method and

the proximal point algorithm for maximal monotone operators. Mathematical Programming,

55(1):293–318, 1992.

BIBLIOGRAPHY 139

[49] Jonathan Eckstein and Wang Yao. Approximate versions of the alternating direction method

of multipliers. Optimization Online, 2016.

[50] Murat A Erdogdu and Andrea Montanari. Convergence rates of sub-sampled Newton methods.

Advances in Neural Information Processing Systems, 28, 2015.

[51] Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-

efficient adaptive regularization with frequent directions. Advances in Neural Information

Processing Systems, 36:75911–75924, 2023.

[52] Miria Feng, Zachary Frangella, and Mert Pilanci. Cronos: Enhancing deep learning with

scalable gpu accelerated convex neural networks. arXiv preprint arXiv:2411.01088, 2024.

[53] YT Feng, DRJ Owen, and D Perić. A block conjugate gradient method applied to linear

systems with multiple right-hand sides. Computer methods in applied mechanics and engineering,

127(1-4):203–215, 1995.

[54] Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya

Ravi, Andreas Mueller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible

python api for openml. arXiv, 1911.02490, 2019.

[55] Kimon Fountoulakis, Jacek Gondzio, and Pavel Zhlobich. Matrix-free interior point method for

compressed sensing problems. Mathematical Programming Computation, 6(1):1–31, 2014.

[56] Zachary Frangella, Pratik Rathore, Shipu Zhao, and Madeleine Udell. Promise: Preconditioned

stochastic optimization methods by incorporating scalable curvature estimates. arXiv preprint

arXiv:2309.02014, 2023.

[57] Zachary Frangella, Pratik Rathore, Shipu Zhao, and Madeleine Udell. Sketchysgd: reliable

stochastic optimization via randomized curvature estimates. SIAM Journal on Mathematics of

Data Science, 6(4):1173–1204, 2024.

[58] Zachary Frangella, Joel A Tropp, and Madeleine Udell. Randomized nyström preconditioning.

SIAM Journal on Matrix Analysis and Applications, 44(2):718–752, 2023.

[59] Zachary Frangella, Shipu Zhao, Theo Diamandis, Bartolomeo Stellato, and Madeleine Udell. On

the (linear) convergence of generalized newton inexact admm. arXiv preprint arXiv:2302.03863,

2023.

[60] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software, 33(1):1, 2010.

BIBLIOGRAPHY 140

[61] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson.

GPytorch: Blackbox matrix-matrix Gaussian process inference with gpu acceleration. NeurIPS,

31, 2018.

[62] Michael Garstka, Mark Cannon, and Paul Goulart. COSMO: A conic operator splitting method

for convex conic problems. Journal of Optimization Theory and Applications, 190(3):779–810,

2021.

[63] Nidham Gazagnadou, Robert Gower, and Joseph Salmon. Optimal mini-batch and step sizes

for SAGA. In International Conference on Machine Learning, pages 2142–2150. PMLR, 2019.

[64] Ryan Giordano, William T Stephenson, Runjing Liu, Michael I Jordan, and Tamara Broderick.

A swiss army infinitesimal jackknife. In AISTATS, pages 1139–1147. PMLR, 2019.

[65] Luc Giraud and Serge Gratton. On the sensitivity of some spectral preconditioners. SIAM

Journal on Matrix Analysis and Applications, 27(4):1089–1105, 2006.

[66] Alex Gittens. The spectral norm error of the naive Nyström extension. arXiv preprint

arXiv:1110.5305, 2011.

[67] Alex Gittens and Michael W Mahoney. Revisiting the Nyström method for improved large-scale

machine learning. The Journal of Machine Learning Research, 17(1):3977–4041, 2016.

[68] Gene Golub and Charles Van Loan. Matrix computations. Johns Hopkins University Press,

2013.

[69] Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression using

sketched preconditioned SVRG. In ICML, pages 1397–1405. PMLR, 2016.

[70] Yehoram Gordon. Some inequalities for Gaussian processes and applications. Israel Journal of

Mathematics, 50(4):265–289, 1985.

[71] Robert M Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: randomized

subspace Newton. In Advances in Neural Information Processing Systems, 2019.

[72] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter

Richtárik. SGD: General analysis and improved rates. In International Conference on Machine

Learning, pages 5200–5209. PMLR, 2019.

[73] Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

[74] Roger Grosse and James Martens. A Kronecker-factored approximate Fisher matrix for

convolution layers. In International Conference on Machine Learning, pages 573–582. PMLR,

2016.

BIBLIOGRAPHY 141

[75] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor

optimization. In International Conference on Machine Learning, pages 1842–1850. PMLR,

2018.

[76] Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera,

Zhengying Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag, Alexander Stat-

nikov, Wei-Wei Tu, and Evelyne Viegas. Analysis of the AutoML Challenge Series 2015–2018,

pages 177–219. Springer International Publishing, Cham, 2019.

[77] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,

53(2):217–288, 2011.

[78] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of

stochastic gradient descent. In International Conference On Machine Learning, pages 1225–1234.

PMLR, 2016.

[79] Bingsheng He and Xiaoming Yuan. On the o(1/n) convergence rate of the Douglas–Rachford

alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

[80] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[81] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral algorithms

from sum-of-squares proofs: tensor decomposition and planted sparse vectors. In Proceedings

of the 48th Annual ACM Symposium on Theory of Computing, pages 178–191, 2016.

[82] Daniel Hsu, Sham M Kakade, and Tong Zhang. A tail inequality for quadratic forms of

subgaussian random vectors. Electronic Communications in Probability, 17:1, 2012.

[83] Arun Jambulapati, Jerry Li, Christopher Musco, Aaron Sidford, and Kevin Tian. Fast and

near-optimal diagonal preconditioning. arXiv preprint arXiv:2008.01722, 2020.

[84] Ruichen Jiang, Michal Derezinski, and Aryan Mokhtari. Stochastic newton proximal ex-

tragradient method. Advances in Neural Information Processing Systems, 37:90818–90852,

2024.

[85] Billy Jin, Katya Scheinberg, and Miaolan Xie. High probability complexity bounds for line

search based on stochastic oracles. Advances in Neural Information Processing Systems,

34:9193–9203, 2021.

[86] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance

reduction. Advances in Neural Information Processing Systems, 26, 2013.

BIBLIOGRAPHY 142

[87] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets

excel on tabular datasets. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,

pages 23928–23941. Curran Associates, Inc., 2021.

[88] Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Global linear conver-

gence of newton’s method without strong-convexity or lipschitz gradients. arXiv preprint

arXiv:1806.00413, 2018.

[89] Priya Kasimbeg, Frank Schneider, Runa Eschenhagen, Juhan Bae, Chandramouli Shama

Sastry, Mark Saroufim, Boyuan Feng, Less Wright, Edward Z Yang, Zachary Nado, et al.

Accelerating neural network training: An analysis of the algoperf competition. arXiv preprint

arXiv:2502.15015, 2025.

[90] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference on Learning Representations, 2015.

[91] Shimon Kogan, Dimitry Levin, Bryan R. Routledge, Jacob S. Sagi, and Noah A. Smith.

Predicting risk from financial reports with regression. In Annual Conference of the North

American Chapter of the Association for Computational Linguistics, NAACL ’09, page 272–280,

USA, 2009. Association for Computational Linguistics.

[92] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.

In ICML, pages 1885–1894. PMLR, 2017.

[93] Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex

optimization. In International Conference on Machine Learning, pages 1895–1904. PMLR,

2017.

[94] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove

those loops: SVRG and Katyusha are better without the outer loop. In International Conference

on Algorithmic Learning Theory, volume 117, pages 451–467. PMLR, 2020.

[95] Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power and

Lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and Applications,

13(4):1094–1122, 1992.

[96] Jonathan Lacotte and Mert Pilanci. Effective dimension adaptive sketching methods for faster

regularized least-squares optimization. In Advances in Neural Information Processing Systems,

2020.

[97] Jonathan Lacotte and Mert Pilanci. Fast convex quadratic optimization solvers with adaptive

sketching-based preconditioners. arXiv preprint arXiv:2104.14101, 2021.

BIBLIOGRAPHY 143

[98] Jonathan Lacotte, Yifei Wang, and Mert Pilanci. Adaptive Newton sketch: linear-time

optimization with quadratic convergence and effective Hessian dimensionality. In International

Conference on Machine Learning, pages 5926–5936. PMLR, 2021.

[99] Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.

Springer, 2020.

[100] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes.

Springer Science & Business Media, 2013.

[101] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.

Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[102] Huamin Li, George C Linderman, Arthur Szlam, Kelly P Stanton, Yuval Kluger, and Mark

Tygert. Algorithm 971: An implementation of a randomized algorithm for principal component

analysis. ACM Transactions on Mathematical Software (TOMS), 43(3):1–14, 2017.

[103] Xudong Li, Defeng Sun, and Kim-Chuan Toh. A highly efficient semismooth newton augmented

lagrangian method for solving lasso problems. SIAM Journal on Optimization, 28(1):433–458,

2018.

[104] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale

optimization. Mathematical Programming, 45(1):503–528, 1989.

[105] Po-Ling Loh. On lower bounds for statistical learning theory. Entropy, 19(11):617, 2017.

[106] Po-Ling Loh and Martin J Wainwright. Regularized M-estimators with nonconvexity: Statistical

and algorithmic theory for local optima. Journal of Machine Learning Research, 16(19):559–616,

2015.

[107] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters

by implicit differentiation. In AISTATS, pages 1540–1552. PMLR, 2020.

[108] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[109] Per-Gunnar Martinsson and Joel A Tropp. Randomized numerical linear algebra: Foundations

and algorithms. Acta Numerica, 29:403–572, 2020.

[110] Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi. Kernel methods

through the roof: handling billions of points efficiently. NeurIPS, 33:14410–14422, 2020.

[111] Song Mei and Andrea Montanari. The generalization error of random features regression:

Precise asymptotics and the double descent curve. Communications on Pure and Applied

Mathematics, 75(4):667–766, 2022.

BIBLIOGRAPHY 144

[112] Maike Meier and Yuji Nakatsukasa. Fast randomized numerical rank estimation for numerically

low-rank matrices. Linear Algebra and its Applications, 686:1–32, 2024.

[113] Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, and Simon Lacoste-Julien. Fast

and furious convergence: Stochastic second order methods under interpolation. In International

Conference on Artificial Intelligence and Statistics, pages 1375–1386. PMLR, 2020.

[114] Xiangrui Meng, Michael A Saunders, and Michael W Mahoney. LSRN: A parallel iterative

solver for strongly over-or underdetermined systems. SIAM Journal on Scientific Computing,

36(2):C95–C118, 2014.

[115] Renato DC Monteiro. An accelerated hybrid proximal extragradient method for convex

optimization and its implications to second-order methods. SIAM Journal on Optimization,

23(2):1092–1125, 2013.

[116] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic

L-BFGS algorithm. In Artificial Intelligence and Statistics, pages 249–258. PMLR, 2016.

[117] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algo-

rithms for machine learning. Advances in Neural Information Processing Systems, 24, 2011.

[118] Riley Murray, James Demmel, Michael W Mahoney, N Benjamin Erichson, Maksim Melnichenko,

Osman Asif Malik, Laura Grigori, Piotr Luszczek, Micha l Dereziński, Miles E Lopes, et al.

Randomized numerical linear algebra: A perspective on the field with an eye to software. arXiv

preprint arXiv:2302.11474, 2023.

[119] Cameron Musco and Christopher Musco. Randomized block Krylov methods for stronger and

faster approximate singular value decomposition. NIPS, 28, 2015.

[120] Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation. arXiv preprint

arXiv:2009.11392, 2020.

[121] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic

approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–

1609, 2009.

[122] Arkadi S Nemirovski and David B Yudin. Problem complexity and method efficiency in

optimization. Wiley-Interscience, 1983.

[123] Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical program-

ming, 140(1):125–161, 2013.

[124] Yurii Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018.

BIBLIOGRAPHY 145

[125] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 1999.

[126] Dianne P O’Leary. The block conjugate gradient algorithm and related methods. Linear

Algebra and its Applications, 1980.

[127] Brendan O’Donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.

Foundations of Computational Mathematics, 15(3):715–732, 2015.

[128] Christopher C Paige and Michael A Saunders. LSQR: An algorithm for sparse linear equations

and sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43–71,

1982.

[129] Courtney Paquette and Katya Scheinberg. A stochastic line search method with expected

complexity analysis. SIAM Journal on Optimization, 30(1):349–376, 2020.

[130] Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–

160, 1994.

[131] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[132] Mert Pilanci and Martin J Wainwright. Newton sketch: A near linear-time optimization

algorithm with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245,

2017.

[133] John Platt. Fast training of support vector machines using sequential minimal optimization.

In Advances in Kernel Methods - Support Vector Learning, 1998.

[134] Danil Prokhorov. IJCNN 2001 neural network competition, 2001.

[135] Kamiar Rahnama Rad, Arian Maleki, et al. A scalable estimate of the out-of-sample prediction

error via approximate leave-one-out cross-validation. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 82(4):965–996, 2020.

[136] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances

in Neural Information Processing Systems, 20, 2007.

[137] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances

in Neural Information Processing Systems, 2008.

[138] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In

Allerton Conference on Communication, Control, and Computing, pages 555–561. IEEE, 2008.

BIBLIOGRAPHY 146

[139] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In

2008 46th Annual Allerton Conference on Communication, Control, and Computing, 2008.

[140] Pratik Rathore, Zachary Frangella, Sachin Garg, Shaghayegh Fazliani, Micha l Dereziński, and

Madeleine Udell. Turbocharging gaussian process inference with approximate sketch-and-project.

arXiv preprint arXiv:2505.13723, 2025.

[141] Pratik Rathore, Zachary Frangella, Jiaming Yang, Micha l Dereziński, and Madeleine Udell.

Have askotch: A neat solution for large-scale kernel ridge regression, 2025.

[142] Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in

training PINNs: A loss landscape perspective. In Forty-first International Conference on

Machine Learning, 2024.

[143] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of

Mathematical Statistics, pages 400–407, 1951.

[144] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear

least-squares regression. Proceedings of the National Academy of Sciences, 105(36):13212–13217,

2008.

[145] Fred Roosta, Yang Liu, Peng Xu, and Michael W Mahoney. Newton-mr: Inexact Newton method

with minimum residual sub-problem solver. EURO Journal on Computational Optimization,

10:100035, 2022.

[146] Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled Newton methods. Mathe-

matical Programming, 174(1):293–326, 2019.

[147] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel

method. NIPS, 30, 2017.

[148] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[149] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.

In IEEE Symposium on Foundations of Computer Science (FOCS), pages 143–152. IEEE, 2006.

[150] Katya Scheinberg and Miaolan Xie. Stochastic adaptive regularization method with cubics:

A high probability complexity bound. In 2023 Winter Simulation Conference (WSC), pages

3520–3531. IEEE, 2023.

[151] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic

average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[152] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT press, 2002.

BIBLIOGRAPHY 147

[153] Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,

Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel

pytorch implementation of the distributed shampoo optimizer for training neural networks

at-scale, 2023.

[154] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business

Media, 2008.

[155] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting

solver for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020.

[156] Will Stephenson, Zachary Frangella, Madeleine Udell, and Tamara Broderick. Can we glob-

ally optimize cross-validation loss? quasiconvexity in ridge regression. Advances in Neural

Information Processing Systems, 34:24352–24364, 2021.

[157] William T Stephenson and Tamara Broderick. Approximate cross-validation in high dimensions

with guarantees. In AISTATS, pages 2424–2434. PMLR, 2020.

[158] William T Stephenson, Madeleine Udell, and Tamara Broderick. Approximate cross-validation

with low-rank data in high dimensions. In NeurIPS, volume 33, 2020.

[159] Jingruo Sun, Zachary Frangella, and Madeleine Udell. Sapphire: Preconditioned stochastic

variance reduction for faster large-scale statistical learning. arXiv preprint arXiv:2501.15941,

2025.

[160] Tian Tong, Cong Ma, and Yuejie Chi. Accelerating ill-conditioned low-rank matrix estimation

via scaled gradient descent. Journal of Machine Learning Research, 22(1):6639–6701, 2021.

[161] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. SIAM, 1997.

[162] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic

cubic regularization for fast nonconvex optimization. Advances in Neural Information Processing

Systems, 31, 2018.

[163] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230, 2015.

[164] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Fixed-rank approximation of

a positive-semidefinite matrix from streaming data. Advances in Neural Information Processing

Systems, 30, 2017.

[165] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practical sketching algo-

rithms for low-rank matrix approximation. SIAM Journal on Matrix Analysis and Applications,

38(4):1454–1485, 2017.

BIBLIOGRAPHY 148

[166] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked

science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[167] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked

science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[168] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. OpenML: networked

science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[169] Nisheeth K. Vishnoi. Lx = b. Foundations and Trends® in Theoretical Computer Science,

8(1–2):1–141, 2013.

[170] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gor-

don Wilson. Exact Gaussian processes on a million data points. NeurIPS, 32, 2019.

[171] Christopher KI Williams and Matthias Seeger. Using the Nyström method to speed up kernel

machines. In NIPS, volume 13, pages 682–688, 2001.

[172] Ashia Wilson, Maximilian Kasy, and Lester Mackey. Approximate cross-validation: Guarantees

for model assessment and selection. In AISTATS, pages 4530–4540. PMLR, 2020.

[173] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

[174] Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex

optimization under inexact Hessian information. Mathematical Programming, 184(1-2):35–70,

2020.

[175] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.

AdaHessian: An adaptive second order optimizer for machine learning. In AAAI Conference

on Artificial Intelligence, volume 35, pages 10665–10673, 2021.

[176] Zhewei Yao, Peng Xu, Fred Roosta, and Michael W Mahoney. Inexact nonconvex Newton-type

methods. INFORMS Journal on Optimization, 3(2):154–182, 2021.

[177] Haishan Ye, Luo Luo, and Zhihua Zhang. Approximate Newton methods. Journal of Machine

Learning Research, 22(66):1–41, 2021.

[178] Rui Yuan, Alessandro Lazaric, and Robert M Gower. Sketched Newton–Raphson. SIAM

Journal on Optimization, 32(3):1555–1583, 2022.

[179] Hangrui Yue, Qingzhi Yang, Xiangfeng Wang, and Xiaoming Yuan. Implementing the alternat-

ing direction method of multipliers for big datasets: A case study of least absolute shrinkage

and selection operator. SIAM Journal on Scientific Computing, 40(5):A3121–A3156, 2018.

BIBLIOGRAPHY 149

[180] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive

methods for nonconvex optimization. Advances in Neural Information Processing Systems, 31,

2018.

[181] Shipu Zhao, Zachary Frangella, and Madeleine Udell. NysADMM: faster composite convex

optimization via low-rank approximation. In International Conference on Machine Learning,

pages 26824–26840. PMLR, 2022.

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Contributions and organization
	Other publications and projects

	Randomized Nyström Preconditioning
	Motivation
	The preconditioner
	Guarantees
	Example: Ridge regression
	Comparison to prior randomized preconditioners
	Roadmap
	Notation

	The Nyström approximation
	Definition and basic properties
	Randomized Nyström approximation

	Approximating the regularized inverse
	Nyström sketch-and-solve
	Overview
	Guarantees and deficiencies
	History

	Nyström Preconditioned Conjugate Gradients
	The preconditioner
	Nyström PCG
	Analysis of Nyström PCG
	Practical parameter selection

	Applications and experiments
	Preliminaries
	Ridge regression
	Approximate cross-validation
	Large-scale ALOOCV experiments
	Kernel ridge regression

	Conclusion
	Proofs not appearing in the main chapter
	Proof of NysExpBound
	Proof of NysExpBound
	Proof of Squared Chevet
	Proof of GenInvErrBnd
	Proof NysInvBnd
	Proof of statements for the optimal low-rank preconditioner P
	Proof of ConvergenceCorollary
	Proof of AdaNysRankThm
	Proof of AdaRankRatProp

	Additional numerical results
	Ridge regression experiments

	Adapative rank selection via a-posteriori error estimation
	Randomized powering algorithm

	Additional experimental details
	Ridge regression experiments
	ALOOCV
	Kernel ridge regression

	Additional numerical results
	ALOOCV

	NysADMM
	Introduction
	Contributions
	Related work
	Organization of the chapter
	Notation and preliminaries

	Algorithm
	Inexact linearized ADMM
	Solving the w-subproblem with Nyström PCG
	NysADMM
	AdaNysADMM

	Applications
	Elastic net
	Regularized logistic regression
	Support vector machine

	Convergence analysis
	Numerical experiments
	Lasso
	l1-Regularized logistic regression
	Support vector machine

	Conclusion
	Proofs not appearing in the main chapter
	Preliminaries
	Proofs of thm:NysCondNum and corr:ADMMSubProb
	Proof of thm:NysADMMConv
	Proof of thm:AdaNysADMM

	AdaNysADMM Algorithm

	SketchySGD
	Introduction
	SketchySGD
	Roadmap
	Notation

	SketchySGD: efficient implementation and hyperparameter selection
	Comparison to previous work
	Theory
	Assumptions
	Quadratic regularity
	Quality of SketchySGD preconditioner
	Controlling the variance of the preconditioned stochastic gradient
	Convergence of SketchySGD
	When does SketchySGD improve over SGD?
	Proofs of theorem:sksgdconvex and theorem:SketchySGDConvex

	Numerical experiments
	SketchySGD outperforms first-order methods
	SketchySGD (usually) outperforms second-order methods
	SketchySGD (usually) outperforms PCG
	SketchySGD outperforms competitor methods on large-scale data
	Tabular deep learning with multilayer perceptrons

	Conclusion
	Additional algorithms
	Modifications for deep learning

	Proofs not appearing in the main chapter
	Proof that SketchySGD is SGD in preconditioned space
	Proof of lemma:relquad
	Proof of lemma:taurhobnd
	Proof of prop:taurho
	Proof of lemma:SubsampAppx
	Proof of prop:NysPrecondLem and corr:NysLoewnUnionBnd
	Proof of lemma:PrecondStrnConvexity
	Proof of prop:PrecondSmoothGrad

	Lower bound on condition number in table:datasets
	Experimental details
	Additional experimental results and figures
	Sensitivity experiments
	Effects of changing the rank
	Effects of changing the update frequency
	SketchySGD default learning rate ablation
	SketchySGD improves the conditioning of the Hessian

	Scaling experiments
	Second-order
	PCG

	Conclusions
	Summary
	Extensions
	Directions for future research

	Bibliography

