

Zachary Frangella

✉ zfrangella@alumni.stanford.edu

🌐 zfrangella.github.io | GitHub [zfrangella](https://github.com/zfrangella)

Education

Stanford University Ph.D., Management Science & Engineering	2022–25
Cornell University , M.Sc., Applied Mathematics	2019–2022
Rensselaer Polytechnic Institute , B.Sc., Mathematics, <i>Magna Cum Laude</i>	2015–2018

Awards & Honors

Dean's Honors List , Rensselaer Polytechnic Institute	2015–2018
Max Hirsch Prize , Rensselaer Polytechnic Institute <i>This Prize is awarded to a Senior in the Department of Mathematical Sciences who has demonstrated outstanding ability in his or her academic work and also gives promise of outstanding success in a career in mathematical sciences.</i>	2019

Research Experience

Stanford University , Stanford, CA <i>Research Assistant</i>	2022–2025
<ul style="list-style-type: none">Designed preconditioned stochastic gradient algorithms leveraging randomized numerical linear algebra to accelerate large-scale machine learning, with applications to GLMs and neural network training.Introduced RPCholesky and KRILL preconditioners for kernel ridge regression (KRR), both adopted in RandLAPACK for large-scale randomized numerical linear algebra.Developed block-access algorithms for solving linear systems involving massive kernel matrices ($n > 10^6$), enabling scalable KRR and Gaussian Process inference on datasets with $n \sim 10^8$ using a single GPU.Analyzed the optimization landscape of physics-informed neural networks (PINNs), explaining training challenges; proposed NysNewton-CG to help address these challenges, which has now been integrated into the DeepXDE library for scientific machine learning.Implemented and benchmarked algorithms in PyTorch, JAX, Python, and Matlab.	
Cornell University , Ithaca, NY <i>Research Assistant</i>	2019–2022

- Investigated algorithms for large-scale linear systems and convex composite optimization, with applications to GLMs, portfolio optimization, (kernel) ridge regression, and SVMs.
- Analyzed the Leave-one-out Cross-Validation (LOOCV) objective for ridge regression; proved quasiconvexity under mild assumptions, enabling global optimization for model selection despite general non-convexity.
- Developed Nyström Preconditioned Conjugate Gradient (Nyström PCG), adopted in Rand-LAPACK (a LAPACK extension for randomized numerical linear algebra), for solving large-scale linear systems with low-rank structure.
- Proposed NysADMM, combining Nyström PCG with linearized ADMM, achieving state-of-the-art performance over solvers such as GLMNet, LIBSVM, and SAGA.
- Implemented and benchmarked algorithms in Python and Matlab for empirical validation.

Rensselaer Polytechnic Institute, Troy, NY
Undergraduate Researcher

Summer 2018

- Developed finite element schemes for parabolic PDEs with non-smooth initial data.
- Investigated Rannacher time-stepping for classic FEM schemes and extended methods to Discontinuous Galerkin formulations.
- Implemented prototypes in MATLAB and conducted numerical experiments.

Publications [\(Google Scholar\)](#)

† → Equal contribution

Journal Articles

- J1. **Frangella, Zachary**, Tropp, J. A. & Udell, M. Randomized Nyström Preconditioning. *SIAM Journal on Matrix Analysis and Applications* **44**, 718–752 (2023).
- J2. **Frangella, Zachary**, Rathore, P., Zhao, S. & Udell, M. Promise: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates. *Journal of Machine Learning Research* **25**, 1–57 (2024).
- J3. **Frangella, Zachary**, Rathore, P., Zhao, S. & Udell, M. SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates. *SIAM Journal on Mathematics of Data Science* **6**, 1173–1204 (2024).

Peer-reviewed Conference Proceedings

- C1. Stephenson, W., **Frangella, Zachary**, Udell, M. & Broderick, T. *Can We Globally Optimize Cross-Validation Loss? Quasiconvexity in Ridge Regression* in *Advances in Neural Information Processing Systems* (2021), 24352–24364.
- C2. Zhao[†], S., **Frangella, Zachary**[†] & Udell, M. *NysADMM: faster composite convex optimization via low-rank approximation* in *International Conference on Machine Learning* (2022), 26824–26840.

C3. Rathore, P., Lei, W., **Frangella, Zachary**, Lu, L. & Udell, M. *Challenges in Training PINNs: A Loss Landscape Perspective* in *International Conference on Machine Learning* (2024), 42159–42191. **Oral, Top 1.5% of submissions.**

C4. Feng, M., **Frangella, Zachary** & Pilanci, M. *CRONOS: Enhancing Deep Learning with Scalable GPU Accelerated Convex Neural Networks* in *Advances in Neural Information Processing Systems* (2024).

In the pipeline

P1. Diamandis, T., **Frangella, Zachary**, Zhao, S., Stellato, B. & Udell, M. *GeNIOS: an (almost) second-order operator-splitting solver for large-scale convex optimization*. *Submitted* (2023).

P2. **Frangella, Zachary**, Diamandis, T., Stellato, B. & Udell, M. *On the (linear) convergence of Generalized Newton Inexact ADMM*. *Submitted* (2023).

P3. Díaz[†], M., Epperly[†], E.N., **Frangella, Zachary**[†], Tropp, J. A. & Webber[†], R.J.. *Robust, randomized preconditioning for kernel ridge regression*. *Submitted* (2024).

P4. Fazlani, S., Frangella, Z. & Udell, M. *Enhancing Physics-Informed Neural Networks Through Feature Engineering*. *Submitted* (2025).

P5. Rathore, P., **Frangella, Zachary**, Yang, J., Dereziński, M. & Udell, M. *Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression*. *Submitted* (2025).

P6. Rathore, P. *et al.* *Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project*. *Submitted* (2025).

P7. Sun, J., **Frangella, Zachary** & Udell, M. *SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning*. *Submitted* (2025).

Talks and Posters

ICME Seminar on Linear Algebra and Optimization , Stanford	2024
<i>Faster Convex Optimization via Randomized Numerical Linear Algebra</i>	
MILA Tensor Network Reading Group , Montreal	2024
<i>SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates</i>	
International Congress of Industrial and Applied Mathematics , Tokyo	2023
<i>Faster Convex Optimization via Randomized Numerical Linear Algebra</i>	
ICME Xpo , Stanford	2023
<i>SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates</i>	
SIAM Conference on Optimization , Seattle	2023
<i>Low-rank Approximation for Faster Optimization</i>	
International Conference on Machine Learning , Baltimore	2022
<i>NysADMM: Faster Composite Convex Optimization via Low-Rank Approximation</i>	
SciMLCon , Virtual	2022
<i>Speeding up A\b with Randomized Preconditioners</i>	

Technical Skills

Programming Languages & Frameworks :

- *Proficient*: Python, Jax, PyTorch, NumPy, Cython, MATLAB, L^AT_EX
- *Familiar*: Pandas, C/C++, Julia

Academic Mentoring

Graduate

Jingruo Sun, M.Sc. Stanford MS&E
Stochastic Proximal Preconditioning

Summer 2024 – Spring 2025

Weimu Lei, M.Sc. Stanford ICME
Optimization for PINNs, GPU Accelerated Optimization Software

Fall 2023 – Fall 2024

Undergraduate

Yingxi Li, B.Sc. Cornell ORIE
Faster Sparse Composite Optimization via SAFE coordinate selection

Spring 2022

Teaching

Rensselaer Polytechnic Institute

MATH 2400: Differential Equations
Teaching Assistant

Spring 2019

Cornell University

MATH 1910: Calculus for Engineers
Teaching Assistant

Fall 2019, 2020

MATH 1920: Multivariable Calculus for Engineers
Teaching Assistant

Spring 2021

MATH 2930: Differential Equations for Engineers
Teaching Assistant

Spring 2020, 2022

Stanford University

CME 307/MS&E 311: Optimization
Teaching Assistant, Guest Lecturer

Spring 2023, Winter 2024, Fall 2024

Academic Service

Organized Sessions

ICME Seminar on Linear Algebra and Optimization, Stanford
with Michael Saunders

Winter 2024

INFORMS: Advances in Optimization for Machine Learning, Seattle
with Pratik Rathore and Madeleine Udell

2024

Conference Reviewer

Advances in Neural Information Processing Systems (NeurIPS)

International Conference on Machine Learning (ICML)

International Conference on Learning Representations (ICLR)

International Conference on Artificial Intelligence and Statistics (AISTATS)

Journal Reviewer

Journal of Machine Learning Research

SIAM Journal on Mathematics of Data Science

SIAM Journal on Matrix Analysis

Automatica

Optimization and Engineering

Statistics & Computing

Relevant Courses

Numerical Computing, Numerical Ordinary Differential Equations, Numerical Partial Differential Equations, Matrix Computations, Data-sparse Matrix Computations, Numerical Methods for Data Science, Reinforcement Learning, Probability Theory, Quantum Physics I-II

Last updated: September 17, 2025