[N}

16
17
18
19

20

21

SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster
Large-Scale Statistical Learning*

Jingruo Sunf, Zachary Frangella*, and Madeleine Udell*

Abstract. Regularized empirical risk minimization (rERM) has become important in data-intensive fields
such as genomics and advertising, with stochastic gradient methods typically used to solve the
largest problems. However, ill-conditioned objectives and non-smooth regularizers undermine the
performance of traditional stochastic gradient methods, leading to slow convergence and signifi-
cant computational costs. To address these challenges, we propose the SAPPHIRE (Sketching-based
Approximations for Proximal Preconditioning and Hessian Inexactness with Variance-REduced
Gradients) algorithm, which integrates sketch-based preconditioning to tackle ill-conditioning and
uses a scaled proximal mapping to minimize the non-smooth regularizer. This stochastic variance-
reduced algorithm converges globally, and enjoys fast local condition number independent conver-
gence, delivering an efficient and scalable solution for ill-conditioned composite large-scale convex
machine learning problems. SAPPHIRE can solve sparse large-scale lasso problems with size 107 x10° in
less than a minute. Extensive experiments on lasso and logistic regression demonstrate that SAPPHIRE
often converges 5 times faster than other commonly used methods such as Catalyst, SAGA, and SVRG.
This advantage persists even when the preconditioner is infrequently updated, highlighting its robust
and practical effectiveness.
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1. Introduction. Modern datasets in science and machine learning are massive in scale.
As an example in genetics, whole genome sequencing efforts on large-scale population cohorts
like the Million Veterans Program, AllofUS program, and the OurFutureHealth project are
expected to collect data from more than millions of individuals on billions of genetic variants.
Single-cell sequencing and epigenetic features such as DNA methylation levels, transcription
factor binding, gene proximity, and other annotations can further increase the scale of the
problem. Naively training a machine learning model on such data leads to an expensive op-
timization problem whose solution is uninterpretable and often fails to generalize to unseen
data. Modern statistics and learning theory provide a solution to this challenge by using
structured regularization to improve model interpretability and generalization. Mathemati-
cally, the optimization problem to solve is a regularized empirical risk minimization (rERM)
problem,

weRP

(rERM) minimize R(w) = % Z&(w) + r(w),
i=1
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2 J. SUN, Z. FRANGELLA, AND M. UDELL

where n is the number of samples, p is the number of features, and w € RP represents the
model weights. Here the ¢;(w)’s are smooth loss functions, and r(w) is a possibly non-convex
and non-smooth regularizer that encourages a parsimonious solution. Popular regularizers
include the [{-norm, SCAD regularizer, or the indicator function for the [p-ball. Problem
(rERM) models many fundamental problems in machine learning, such as Lasso, elastic-net
regression, /1-logistic regression, dictionary learning, and matrix completion, as well as modern
applications such as convex neural networks [40, 17], data models for deep learning [24], and
pruned ensembles of trees [33].

Realistic problems in high dimensions n and p are generally ill-conditioned, with a loss
whose Hessian eigenvalues span many orders of magnitude [19, Table 2]. Ill-conditioning
requires first-order methods like stochastic gradient descent to use a small learning rate to
avoid divergence, and hence to suffer from slow convergence. For example, if ¢(-,w) is the
loss of a generalized linear model (GLM), the conditioning of (rERM) is controlled by the
conditioning of the data matrix X. In large-scale datasets, the features are often highly
correlated, so X is approximately low-rank and has a large condition number—possibly larger
than the sample size n, leading to a difficult optimization problem in (rERM).
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Figure 1. Showcase experiment of Click Prediction. SAPPHIRE significantly outperforms competing stochas-
tic optimizers on a large-scale click prediction problem with the avazu dataset (n = 12,642,186, p = 999,990).

A traditional way to mitigate ill-conditioning in optimization is to use second-order meth-
ods, such as Newton’s method or BFGS, which incorporate curvature information. These
methods are robust and can achieve local superlinear convergence. While these classical
methods do not scale to the big data regime, new stochastic second-order methods developed
in the last decade can scale and deliver better practical performance than first-order methods
[10, 16, 41, 46, 22, 35, 18]. Indeed, recent work [18] demonstrates that combining second-order
information with variance-reduced gradients can yield fast stochastic second-order methods
with strong theoretical and practical convergence. However, these methods work best for
smooth and (strongly) convex problems, and cannot handle structured regularization with a
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SAPPHIRE 3

non-smooth regularizer, such as the ¢; regularizer in the Lasso problem.

Structured regularization improves both interpretability and generalization. However,
its effect on ill-conditioning is more nuanced. On one hand, near convergence, the additional
structure can help the algorithm identify a lower-dimensional basis for the solution and reduce
the effective dimensionality of the problem. On the other hand, many structured penalties
are non-smooth, which complicates algorithmic design and can worsen conditioning. Thus,
even with structured regularization, high-dimensional problems (n,p > 1) still suffer from
ill-conditioning.

In this work, we address precisely these computational challenges, using stochastic second-
order information to develop an efficient, scalable method that handles both non-smoothness
and large-scale, ill-conditioned data. Our algorithm, SAPPHIRE (Sketching-based Approxi-
mations for Proximal Preconditioning and Hessian Inexactness with Variance-REduced Gra-
dients), is a preconditioned variance-reduced stochastic gradient algorithm that generalizes
the approach in [18] to the (non-smooth) regularized problem (rERM). Figure 1 shows the
performance of SAPPHIRE with two different preconditioners on a large-scale (and hence ill-
conditioned) logistic regression problem with an elastic-net penalty. With either precondi-
tioner, SAPPHIRE converges significantly faster than competing methods, demonstrating its
robustness and efficiency.

1.1. Contributions. We summarize our contributions as follows:

1. We introduce a robust framework, SAPPHIRE, to solve ill-conditioned composite large-
scale convex optimization problems using variance reduction that requires only stochas-
tic gradients and stochastic Hessians, and prove convergence of this framework under
lazy preconditioner updates.

2. SAPPHIRE accesses the non-smooth regularizer through a scaled proximal mapping
in the preconditioned norm. While this mapping does not have a closed form, we
propose to solve it iteratively using accelerated proximal gradient (APG) algorithm
and demonstrate that only a few APG iterations are required.

3. We provide default hyperparameter recommendations and verify they yield excellent
performance across a broad testbed of datasets without further data-dependent tuning.

4. We prove that SAPPHIRE achieves global linear convergence for strongly convex ob-
jectives and global sublinear convergence for convex objectives. We also show that
the algorithm converges locally at a linear rate that is independent of the condition
number.

5. Through experiments with 28 diverse datasets, we demonstrate that SAPPHIRE of-
ten converges over 5 times faster than other popular stochastic optimizers on ill-
conditioned problems.

1.2. Roadmap. We organize the paper as follows. Section 2 reviews recent literature,
highlighting connections to existing methods and the distinctions of our proposed algorithm.
Section 3 proposes the SAPPHIRE algorithm formally and elaborates on its core components of
sketch-based preconditioning and scaled proximal mapping. Section 4 establishes comprehen-
sive convergence results for SAPPHIRE, covering both global and local convergence with various
convexity assumptions. Section 5 demonstrates the superior performance of the algorithm over
popular tuned stochastic optimizers through extensive numerical experiments.
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4 J. SUN, Z. FRANGELLA, AND M. UDELL

1.3. Notation. Throughout the paper, || -|| denotes the Euclidean norm, and denote ||-|| 4
as the matrix norm induced by matrix A, where ||z||4 = VaTAz. For a positive definite
matrix A, we write A > 0. The Loewner order is denoted by =<, where A < B if the
matrix B — A = 0. Given a positive definite matrix A € RP*P | its eigenvalues in descending
order are written as A\j(A) > A2(A) > --- > A,(A). We denote the smoothness constant of
L(w) = 3 | ¢;(w) by L. For each ¢;(w) in (tERM), we denote the smoothness constant by
L; and define Lyax = max;ep,) L. If L(w) is p-strongly convex we denote its condition number
by k = L/, and define Kmax = Lmax/1. The condition number of symmetric positive definite
matirx A is defined as k(A4) = A\(A4)/Ap(A). For any scalar § > 0, we define the effective
dimension dfff(A) = tr(A(A + BI)7!), which provides a smoothed measure of eigenvalues
greater than or equal to .

2. Related Work. Here we review prior work on stochastic second-order methods, with
particular emphasis on those developed for convex optimization problems, which is the main
focus of this paper.

Variance-reduced stochastic first-order methods for finite sum minimization. Due to the mas-
sive size of contemporary machine learning datasets, much of the research in the past decade
has focused on developing efficient algorithms that only require a stochastic first-order ora-
cle. The most successful of these algorithms are those that employ variance reduction, which
results in the variance of the gradient approaching zero as the iterates near an optimum [26].
This technique yields global sublinear and linear convergence when the objective is convex
and strongly convex, respectively. Popular variance-reduced optimizers include SAGA [13],
ProxSVRG [52], Catalyst [32], and Katyusha [1]. These algorithms are also popular in prac-
tice for solving the empirical risk minimization problem (rERM). Indeed, the popular software
package scikit-learn employs SAGA as the default stochastic gradient-based solver for prob-
lems such as logistic regression. In the non-convex case, convergence to approximate stationary
points has been established for many variants of these algorithms [4, 44, 25, 39, 2]. The as-
sumptions underlying these theoretical guarantees typically prescribe that these methods use
a minimal learning rate that goes to zero with n. However, in practice, these algorithms are
often run with a fixed learning rate as though the objective were convex, as this yields better
performance [25, 39].

Stochastic second-order methods for finite sum minimization. Stochastic first-order methods
suffer in the face of ill-conditioning. To address this limitation, many authors have worked on
stochastic second-order algorithms capable of scaling to large-scale machine learning problems.
We classify these schemes by their target problems and methods used to compute gradients
and Hessian. We summarize these results in Table 1. Some methods require exact gradients
at every iteration; some require only stochastic gradients; and some (“snapshot”) require
stochastic gradients and occasional exact gradients. All methods in the table require only
stochastic samples of the Hessian. Many assume interpolation (inf,, R(w) = 0) to prove
convergence to the global optimum.

These work vary in how they use second-order information: some directly apply the inverse
of the subsampled Hessian to the stochastic gradient [46, 8, 35], or they use the subsampled
Hessian-vector product to update the preconditioner rather than using the difference between
two stochastic gradients [36, 9, 35]. However, the theory underlying these methods requires
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Table 1
Stochastic Second-Order Methods in ERM Literature
Papers Loss Regularizer Gradient Fixed batchsize Interpolation
[10, 16, 6, 41, 22, 56, 12, 57] Convex None Exact No No
(36, 9, 46, 8, 35] Convex None Stochastic No Yes
(14, 19, 18, 21, 51, 29] Strongly convex Smooth Snapshot Yes No
This paper Convex Non-smooth ~ Snapshot Yes No

large or growing gradient batch sizes [46, 9, 8], periodic full gradient computation [36], or
interpolation [35], which are unrealistic assumptions for large-scale convex problems. Further,
many of these methods lack practical guidelines for setting hyperparameters such as batch
sizes and learning rate, leading to the same tuning issues that plague stochastic first-order
methods.

Recent work has developed more practical stochastic second-order algorithms that use
variance-reduction and stochastic second-order information to improve convergence [14, 19,
18, 21]. The PROMISE framework in [18] leads to globally linearly convergent algorithms with
constant gradient batch sizes and comes with theoretically-motivated default hyperparameter
settings that outperform tuned stochastic first-order methods.

However, most of these improved algorithms still assume smoothness and strong convexity
to show their convergence results. For instance, SVRN [14, 21] and PROMISE [18] require smooth
and strongly convex objectives. SketchySGD [19] can be used in the convex case but only con-
verges to a noise ball around the optimum. [51] and [29] can handle composite problems with
a non-smooth regularizer in practice, but their convergence analyses are restricted to smooth
and strongly convex problems. Therefore, SAPPHIRE fills a significant gap in the literature by
providing condition-number-free linear convergence on convex composite problems (rERM).

Provably convergent stochastic second-order methods for smooth non-convex finite sum
minimization have been developed. Most methods are based on using a randomized ap-
proximation to the Hessian (via subsampling or sketching) together with cubic regularization
[28, 48, 53], Newton-CG [55, 43], or trust region methods [7, 54, 45] to (for example) guar-
antee convergence to a local minimum. However, many of these methods require solving a
challenging subproblem at each iteration, such as a cubic Newton step or a trust-region prob-
lem. Consequently, these methods are often slower than stochastic first-order methods despite
converging in fewer iterations.

2.1. Comparison with SAPPHIRE. Table 2 positions SAPPHIRE relative to existing work
on state-of-the-art stochastic second-order optimizers for solving instances of (rERM) with a
loss that depends only on the inner product of the parameters and the data, a model class
that includes all (regularized) generalized linear models

n

(21) S twTw) 4 5wl + ()
=1

where x; € RP is the ith row of data matrix X. A restriction to [o-regularized GLMs
makes comparison to previous work as straightforward as possible, as MB-SVRP, PROMISE, and
Proximal Subsampled Newton restrict their analysis to GLMs. The table compares meth-
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ods based on the properties they require to achieve condition number-free local convergence'.

Table 2 considers whether the method allows for a non-trivial convex regularizer r(w), its
required gradient batchsize, and the size of the neighborhood of local convergence.

Table 2
SAPPHIRE wvs. State-of-the-art competitors for solving (2.1). Of the methods in the table, SAPPHIRE is
the only variance-reduced stochastic gradient algorithm whose local convergence guarantees allow for a non-
trivial convex reqularizer. SAPPHIRE also has the best gradient batchsize requirement without requiring a smaller
neighborhood of local convergence.

Method Regularizer Gradient Batchsize Loca?aC((i)i;lje?;ence
SAPPHIRE (Algorithm 3.1)  Convex and Proxable O (r¥) o (%)
Proximal SSN [29] Convex and Proxable n 0 (&%
MB-SVRP [51] None O (3 (V2L(w.))d (V2 L(w.)rnlak ) o(z"=%)
SVRN [14, 21] None O(Fmax) o (L2
SketchySVRG [18] None O (1Y) @] (”212 )

3. SAPPHIRE: A Fast Algorithm for Large-Scale Statistical Learning. In this section, we
formally introduce the SAPPHIRE algorithm.

3.1. SAPPHIRE algorithm. SAPPHIRE is a preconditioned variance-reduced stochastic gra-
dient algorithm based on the classic ProxSVRG algorithm from [52]. The most significant
innovation of SAPPHIRE is the design of an effective preconditioner for the problem. Precondi-
tioning is critical to problems with large-scale data, often improving the runtime by orders of
magnitude. However, preconditioning complicates the computation of the proximal operator.

In the following sections, we discuss how to construct the preconditioner, efficiently solve
the associated scaled proximal mapping, and set algorithmic hyperparameters.

3.2. Efficient preconditioning. Preconditioning is a powerful technique to accelerate the
convergence of optimization algorithms on ill-conditioned problems. A good preconditioner
must effectively approximate the local Hessian while being fast to compute and to invert.

Classic methods from optimization, like Newton’s method and BFGS, precondition the
gradient using the (approximate) inverse Hessian. As a result, these methods enjoy fast local
convergence rates that are independent of the condition number. Unfortunately, the Hessian
or Hessian approximation used by these methods is expensive to compute and to invert for
large-scale problems. These methods fail to scale to the problems commonly encountered in
machine learning. Recent work [16, 46, 18] has shown in the smooth non-composite, effective
preconditioners can be constructed only using a small fraction of the data, reducing the cost
of preconditioning substantially. SAPPHIRE adopts the Subsampled Newton and the Nystrom
Subsampled Newton preconditioners, motivated by the authors’ prior work [18].

3.2.1. Subsampled Newton Preconditioner. The subsampled Newton (SSN) precondi-
tioner first introduced in [46], approximates the Hessian matrix V2L(w) € RP*P of the smooth

!We compare based on local and not global convergence as global convergence analyses are often looser and
sometimes absent from previous work.
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Algorithm 3.1 SAPPHIRE

1: Input: starting point wg, gradient and Hessian batch S}, .S, with size by, by,
preconditioner P, preconditioner update times U/, learning rate 77(0),
snapshot update frequency m

Initialize: snapshot w = wy

2: for s=0,1,... do

3:  Compute full gradient g = VL(w)

4 Set wg = W

5 for k=0,1,...m—1do

6: if ms 4+ k € U then

7 Sample batch S}, to obtain indices for €2L(w,(:))

8 Compute preconditioner PIES): SSN (3.1) or NySSN (3.3) with §2L(w,(:))

9

: end if
10: Sample stochastic gradient batch S,
11: Compute estimator @L(wl(:)) = é >ies, V&-(w,(:)) and VL(d) = é >ies, VEi(0)
12: Compute v,(f) = §L(w,(€s)) — VL(®) + g

()

13: w,g‘:zl = proxf;’f (w,gs) — n(s)(Pés))_lv,(:)) > Apply Algorithm 3.2
14: Optional:
15: Update learning rate via stochastic linesearch > Apply Algorithm SM2.1

n(8+1) — SLS(n(S))

16: end for

17 Option 1: @ = % pya w,(;) > Update snapshot as average of inner iterates
18:  Option 2: w = wwf) > Update snapshot as last iterate
19: end for

part of the objective in (rERM) using a subset S, C {1,...,n} of the data with batch size
bp, = |Sp|. The preconditioner is constructed as

(3.1) P=1 S Vw)+pl,
bp, ;
1€SH
where p > 0 is a regularization parameter that mitigates noise in the smaller eigenvalues of
this preconditioner.

By using only a subset of the data, this approach significantly reduces computational cost
compared to a full computation of the Hessian (as in Newton’s method), yet still identifies
essential information about the local curvature. To understand the approximation qualities
of the SSN preconditioner, we first recall the notion of p-Hessian dissimilarity from [19].

Definition 3.1. Let L(w) be as in (rERM), where each £; : RP +— R is a smooth convex
function. Let p > 0 and w € RP, then for p-Hessian dissimilarity at w is given by

™ (V2L(w)) = 1;2% Amax ((V2L(w) + pD)YV2(V20;(w) + pI)(V2L(w) + ,0[)—1/2> .
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8 J. SUN, Z. FRANGELLA, AND M. UDELL

Moreover, given a subset S of RP, we define the p-maximal Hessian dissimilarity over S by:

TP(S) = Slég TP(V2L(U))).

Remark 3.2. When S = RP, we will write 7{ for shorthand.

p-Hessian dissimilarity measures how much an individual Hessian V2/;(w) deviates from the
average Hessian V2L(w). When the V2/{;(w) are relatively similar to each other, the smaller
7P(V2L(w)) is—in the extreme case all the V2/;(w) are the same, 7°(V2L(w)) = 1. Con-
versely, when an outlier V2¢;(w) exists, the dissimilarity can be as large as n. The following
lemma from [19] summarizes these facts.

Lemma 3.3. For any p > 0 and w € RP, the following inequalities holds

7°(w) < min {n, ]\4(w)—|—p}
p+p
where M (w) = Amax(V2;(w)).
£ < min {n, IM} )
p+p

The p-Hessian dissimilarity can be far smaller than the upper bound in Lemma 3.3 suggests.
See [19] for more details. This is significant as 7°(V2?L(w)) controls the sample size required
to obtain a non-trivial approximation to the Hessian.

Lemma 3.4. Let w € RP, ¢ € (0,1) and p > 0. Construct V2L(w) with

by — O <Tp<v;L<w>> g (dsz(sz(w)))) |

Then, with probability at least 1 — 4§,
(1—¢)Pssn = VZL(w) + pI = (14 ¢)Pssn.

3.2.2. Nystrom Subsampled Newton Preconditioner. SAPPHIRE achieves superior per-
formance using a different preconditioner: the Nystrom Subsampled Newton (NySSN) pre-
conditioner introduced in [19, 18]. The Nystréom preconditioner computes a low-rank approxi-
mation of the Hessian matrix by projecting the subsampled Hessian onto a low-rank subspace
in the span of ). The Nystrom Subsampled Newton preconditioner is given by

(3.2) P = (V2L(w)Q)(QV2L(w)Q) " (QTV2L(w)) + pI

where 0 € RP*" is a random test matrix. Typical choices for €2 include standard normal
random matrices, randomized trigonometric transforms, and sparse-sign matrices [49, 20].
Constructing the NySSN preconditioner via (3.2) is numerically unreliable due to the
presence of the pseudoinverse. Instead we apply the numerically stable procedure from [49]
to compute the Nystrom approximation: (§2L(w)Q)(QT§2L(w)Q)*1(QT§2L(w)). The nu-
merically stable procedure is presented in Algorithm SM1.1 in Section SM1. It provides an
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approximate low-rank eigendecomposition of §2L(w): VAVT. Using the stable procedure,
the NySSN preconditioner is given by

(3.3) P=VAVT 4+ pI

The preconditioner and its inverse can be applied to vectors in O(pr) time and requires O(pr)
storage [19, 18].

This low-rank preconditioner is faster to invert for large-scale problems compared to the
SSN preconditioner, especially when by is large or the data is dense, and significantly re-
duces the computational cost of preconditioning. Like the SSN preconditioner, the NySSN
preconditioner admits strong theoretical guarantees. We have the following result from [19].

Theoretical guarantees.

Lemma 3.5. Let w € RP, p >0, and v > 1. Construct §2L(w) with
d2e(V2L
b, = O <TP(V2L(w)) log <ff(5(w>)>>

samples and the Nystrom approximation with rank r = O <dz§(§2L(w)) + log (%)) Then
with probability at least 1 — 6,

1 3
ﬂpNySSN < V2L(w) + pI = §PNySSN-

3.2.3. Choosing a preconditioner. It is natural to wonder when the SSN preconditioner
is preferable to the NySSN preconditioner, and vice versa. A naive first appeal to the theory
would suggest that the SSN preconditioner should exhibit superior performance (but perhaps
is more expensive to apply), as the NySSN preconditioner truncates the subsampled Hessian,
and hence loses information. However, the situation turns out to be much more nuanced in
practice. Prior studies [18, 19] have shown that the NySSN preconditioner and SSN precon-
ditioner often perform comparably to each other.

A general comparison of the preconditioners is given in Table 3. In terms of computation
cost, the NySSN preconditioner is less expensive to apply and store when the Hessian is
dense. Conversely, when the Hessian is sparse, the SSN preconditioner is less expensive to
store and can also be faster to apply, however the latter advantage may vanish in highly
parallel computing environments.

Table 3
Comparison of Preconditioners

Construction Cost | Computation Cost | Memory Requirement
SSN NA O(byp) O(byp)
NySSN O(bprp) O(rp) O(rp)

While prior studies have been unable to demonstrate a concrete advantage of one precon-
ditioner over the other, in this paper we observe that the NySSN preconditioner generally out-
performs the SSN preconditioner across a wide testbed of problems (see Section 5)—consisting
of datasets that range from very dense to very sparse, and vary in size from small and to large.
Given these results, and prior findings, we recommend using the NySSN preconditioner.
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3.3. Scaled Proximal Mapping. In contrast to ProxSVRG, to update the parameters,
SAPPHIRE must evaluate the scaled proximal mapping:

_ . 1 -
Whp1 = proxf;;(wk — nP~ ) = argmin {r(w) + 2*”10 — P (wy, — nug) ||120}
weRP n

(3.4) —arguin {grw) + {0 = ) + glhw - e}
weRP
Unlike the traditional proximal operator, which often has a closed-form solution, (3.4) must be
solved iteratively. For SAPPHIRE to be practical, it is essential that (3.4) be solved efficiently.
SAPPHIRE uses the Accelerated Proximal Gradient (APG) algorithm [5, 37] to solve (3.4),
motivated by three factors. The first is that it is easy to apply the preconditioner P to
vectors, so computing the gradient of the smooth part of (3.4) is cheap. The second is that we
can easily set the learning rate without resorting to line search—the smoothness constant is
A1 (P)+p, which is easy to compute for our preconditioners. The third is that (3.4) is A1 (P)+p-

smooth and p-strongly convex and APG converges at the optimal rate of O (\/ A(P)/ p>. We
present pseudocode for APG applied to (3.4) in Algorithm 3.2.

Algorithm 3.2 Accelerated Proximal Gradient (APG) for solving (3.4).
: Input: starting point xg, preconditioner P, and regularization function r
. Initialize: yg = xg,s0 =1
: Set v = (A (P) +p)*
: fort=0,1,...7T do
Calculate w441 = prox,,, (y: — a(nve + P(zr — wy))
Set sip1 = 3(1+ /1 +4s?)
Update yt+1 = ze41 + ‘Z: (w1 — xt)
end for

In practice, we find running just twenty iterations of Algorithm 3.2 allows SAPPHIRE to
achieve fast convergence.

3.4. Hyperparameter recommendations. For the Hessian batchsize and rank, we recom-
mend the values of b, = 256, r = 10. We recommend updating the preconditioner every
5 epochs for non-quadratic objectives. For quadratic objectives, the preconditioner update
frequency should be infinite, as the Hessian is constant. We recommend using 20 APG it-
erations for evaluating the scaled proximal mapping in Algorithm 3.1. For the learning rate
1, we recommend a default value of 1/4. This recommendation is inspired by Theorem 4.8
with the additional assumption that £p = 1, which would be the case if we had the perfect
preconditioner. This theory-inspired heuristic is used in all experiments in Section 5, and
leads to excellent performance. As an alternative strategy, we present a stochastic linesearch
heuristic in Section SM2, which also works very well in practice.

4. Theory. In this section, we provide a convergence analysis for SAPPHIRE. Our analysis
shows SAPPHIRE converges to the global optimum linearly when L(w) is smooth and R(w) is
strongly convex, and sublinearly when L(w) is smooth and R(w) is convex. We then provide
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concrete examples that illustrate when preconditioning improves convergence. In particular,
when L(w) is smooth and R(w) is strongly convex, we establish that SAPPHIRE enjoys local
condition-number free convergence.

4.1. Quadratic Regularity. We begin by defining an important regularity condition [18].

Definition 4.1 (Quadratic Regularity). Let f : C +— R be a smooth convex function, where C
s a closed conver subset of RP. The function f is quadratically regular if there exist constants
0 < vp <y <00 such that for all wo, wi,ws € RP,

7(C)
2
Here, v,(C) and ~;(C) are called the upper and lower quadratic regularity constants, respec-
tively. Moreover, if f(w) = Sy fi(w) and each f; are (yu;,Vi,)-quadratically regular, we

define

(4.1)

) < Yu(C)
- 2

|we —w1|]2vzf(wo) < flwe) — f(w1) — (V f(wr), wa —wy (w2 _w1H2V2f(w0)'

Yeumax (C) = max vy, (C), 1, (C) = miny, (C).
i€ln] 1€[n]

We also define the quadratic regularity ratio and the maximal quadratic regularity ratio as

_ Yu(C) q — Vit (C)
w(e) M n(C)

Remark 4.2. If C = RP, we will omit explicitly writing C when presenting the quadratic
regularity constants/ratios.

q(C) :

Quadratic regularity generalizes the traditional assumptions of smoothness and strong
convexity to the Hessian norm. This assumption is critical to show convergence under infre-
quent preconditioner updates, as it allows f to be upper and lower bounded in terms of the
Hessian evaluated at where the preconditioner was constructed. Most importantly, quadratic
regularity holds whenever the function in question is smooth and strongly convex.

Lemma 4.3 (Smoothness and strong-convexity imply quadratic regularity). Let f:C — R
be a B-smooth p-strongly convex function, where C is a closed convexr subset of RP. Then f is
quadratically regular.

Unfortunately, when f is only smooth and convex, quadratic regularity fails: the Hessian is
only guaranteed to be psd, and where it has a nullspace, it cannot define a norm. Instead, in
this case, our convergence analysis rests on the weaker notion of p-weak quadratic reqularity.

Definition 4.4 (p-weak quadratic regularity). Let f : C — R be a smooth convex function,
where C is a closed convexr subset of RP. Then f is p-weakly quadratically regular if the
reqularized function

fo(w) = f(w) + gHwH2 is quadratically regular.

We denote the corresponding quadratic reqularity constants by: 4, 'ylp s Vi, and ’ylpmin.
We immediately conclude the following result from this definition and Lemma 4.3.

Lemma 4.5 (Smoothness and convexity imply p-weak quadratic regularity). If f is B-smooth
and convex, then it is p-weakly quadratically reqular for any p > 0.
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12 J. SUN, Z. FRANGELLA, AND M. UDELL

Three different scenarios.. When analyzing (rERM) under the hypothesis of convexity, the
standard regularity assumptions are: 1. The ¢;(w) are smooth and strongly convex for all
i € [n], 2. The ¢; are smooth for all ¢ € [n] and L(w) is strongly convex, and 3. The ¢;(w) are
smooth for all ¢ € [n]. Lemma 4.3 and Lemma 4.5 show these assumptions can be expressed
in the language of quadratic regularity:

1) 4;(w) is Bi-smooth and strongly convex for all i € [n] = ¥¢;(w) is quadratically

regular for all 1 € [n] and L(w) is quadratically regular.

2) ¢;(w) is Bi-smooth and convex for all i € [n] and L(w) is strongly convex = /¢;(w)

is p-weakly quadratically regular for all 1 € [n] and L(w) is quadratically regular.

3) ¢i(w) is Bi-smooth and convex for all i € [n] = /;(w) is p-weakly quadratically

regular for all 1 € [n] and L(w) is p-weakly quadratically regular.
Our analysis focuses on settings 1) and 3), as setting 2) is identical to setting 1) except for a
change in one constant. We will elaborate on this point more below.

4.1.1. When quadratic regularity improves over the condition number. In this subsec-
tion, we provide intuition for the quadratic regularity ratio through examples that contrast it
with the condition number, the quantity that typically appears in the analysis of optimization
algorithms. This discussion expands on that of [18]. As our analysis depends on the quadratic
regularity ratio and not the condition number, our upper bounds are correspondingly tighter
when the quadratic regularity ratio is smaller than the condition number.

Least-squares loss. Let L(w) = 5= || Xw —y||* + %U'H%, where X € R"*P and v > 0. Since L
is a sum of quadratic functions, it has a constant Hessian and equals its own Taylor expansion.

It immediately follows that v;, = v,, = 1. Hence, q = qmax = 1. This ratio is much smaller
O'max(X)2+nV
Omin (X)2+nv
GLM on a bounded domain. A function f is M -quasi-self concordant (M-gsc) over C if

than the condition number when the data matrix A is ill-conditioned.

D3 f(z)[u, u,v] < MHuH%gﬂx)HvH Vz € C and Yu,v € RP,

where D3 f(z) is the trilinear form representing the third derivative of f [38]. Let R > 0 and
suppose that D = diam(C) < log(R)/M. Then the arguments of [18] show that

q(C) < R?,  qmax(C) < R%

Any GLM (which includes non-quadratic problems like logistic and Poisson regression) with
a data matrix X whose rows satisfy ||z;|| < 12 for all i € [n] is 1-quasi-self-concordant [27, 15].
Thus, for R = e, we have q(C) < 8. In contrast, the condition number of L over C behaves

like: k(C) = 0O (%), which is large when the data matrix A is ill-conditioned. This

analysis shows that for objectives of interest, the quadratic regularity ratio may be a constant
independent of the condition number even when the function is not well approximated by a
quadratic.

2This is a standard normalization step employed in packages like scikit-learn for stochastic optimizers
like SAGA.
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4.2. Assumptions. This subsection introduces assumptions needed for our analysis.

Assumption 1 (Convexity and smoothness). The non-smooth function r(w) is lower semi-
continuous and convex, and its effective domain dom(r) = {w € R? | r(w) < +oc} is closed.

Assumption 1 is standard and holds for all practical convex regularizers of interest.

Assumption 2 ((-spectral approximation). There exists ¢ € (0,1) such that for each j € U,
the preconditioner Pj constructed at w; satisfies

(1-¢)P; 2 V2L(wj) = (1+¢)Pj, if L(w) is quadratically regular,
V2L(wj) < (1 +¢)P; if L(w) is p-weakly quadratically reqular.

Lemma 3.4 and Lemma 3.5 show that the SSN and NySSN preconditioners, when con-
structed properly, satisfy the conditions of Assumption 2 with high probability. Thus, Assump-
tion 2 can be viewed as conditioning on the good event that the appropriate approximation
bound holds. A similar assumption was made in [18]. All our theorems can be shown to
hold so long as Assumption 2 holds with high probability: when the failure probability is
sufficiently small, we can apply the law of total expectation to obtain the same rate with a
slightly worse constant factor. We rely instead on Assumption 2 as it leads to simpler proofs
and allows us to establish the convergence of SAPPHIRE with any preconditioner that satisfies
Assumption 2, rather than only for the SSN and NySSN preconditioners.

4.3. Convergence of SAPPHIRE. To establish convergence of SAPPHIRE, we must control
the smoothness parameter of the stochastic gradient in the preconditioned norm in expecta-
tion. A constant Lp that provides an upper bound on this parameter is known as the pre-
conditioned expected smoothness constant [18, 19]. The preconditioned expected smoothness
generalizes the Euclidean norm-based expected smoothness constant from [23] to precondi-
tioned space. In the case when r(w) = 0 in (rERM), [18, 19] have established bounds on
the preconditioned expected smoothness constant. The following lemma provides an explicit
expression for Lp in the general composite case.

Lemma 4.6 (Preconditioned Expected Smoothness). Instate Assumption 1 and let each
li(w) in (rERM) be conver and twice-continuously differentiable. Let p > 0 and P be a
preconditioner constructed at wp € RP satisfying

V2L(wp) < (1 +¢)P.
Then for any w € RP, if each £;(w) in (rERM) is quadratically regular, then
E|VL(w) — VL(w,)|3-1 < 2Lp[R(w) — R(wy))],
where n(by — 1) N
= (et e ) 00

The proof is provided in section SM3.
Lemma 4.6 extends the classical smoothness condition in deterministic optimization to
the stochastic and preconditioned setting and establishes a direct relationship between the
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14 J. SUN, Z. FRANGELLA, AND M. UDELL

preconditioned gradient norm variance and the suboptimality of R(w)—R(w*). It generalizes
the results of [18, 19] to the convex composite setting. If the individual ¢;’s are p-weakly
quadratically regular, then L£p in Lemma 4.6 will be constructed by ~i, 7, and ¥4 . .

Lemma 4.7 (Preconditioned Stochastic Variance).  Instate Assumption 1 and Assump-
tion 2, and define the variance-reduced stochastic gradient at inner iteration k in outer it-
eration s, U](CS) = @L(w,(j)) — VL(®)) + VL(w®)). The variance of this stochastic gradient is
bounded in the preconditioned norm as

Elloy” = VL@ [0, < 4Lp[R@EY) = R(we) + R@E) = R(w,)]

The proof is provided in section SM4.

Lemma 4.7 shows that by employing the variance-reduced stochastic gradient U](CS), we
are guaranteed that the variance of the stochastic gradient goes to zero as we approach the
optimum. This property is essential to establishing convergence. If the gradient variance does
not go to zero as we approach the optimum, we can only reach a neighborhood of the optimum

with a fixed stepsize.

4.3.1. Convergence for quadratically regular .. Here, we establish global convergence
of SAPPHIRE under quadratic regularity of L. For brevity, we only consider the case when
each /;(w) is quadratically regular. The argument and resulting statements for the case when
the ¢;(w) are only p-weakly quadratically regular are identical, except that we replace Lp by
Lp,.

P

Theorem 4.8 (Global Linear Convergence). Instate Assumption 1 and Assumption 2. Sup-
pose each {;(w) is quadratically reqular. Run Algorithm 3.1 with learning rate 0 < n < ﬁ.
Then the output of Algorithm 3.1 satisfies

E[R(0®)) — R(w,)] < < ! AnLp(m + 1)

“\A =yl —4nLp)m (1 - 477ﬁp)m> (R(wg) — R(wy)) .

Thus, settingn = O(1/Lp) and m = O((lfgw), we have

(s 2\°
BR(0) - R(w)] < (3 ) (Rlw) - Rw.).
Hence, the error falls below € > 0 after s > 3log (M
number of stochastic gradient queries needed to reach an e-suboptimal point is bounded by

b, — 1 *n—=b 1
(4.2) O(<n+1i§ <§_1q+:’;2_1gCImax>>log <6>>

The proof of Theorem 4.8 is provided in Appendix A.1.

Theorem 4.8 establishes global linear convergence of SAPPHIRE when L is quadratically
regular and each ¢; is quadratically regular. It substantially generalizes Theorem 17 in [18],
which only establishes convergence in the special case r(w) = v/2|lwl||3. In the preconditioned

) outer iterations and the total
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setting, the role of the condition numbers x and k. are played by the quadratic regularity
ratios q and qmax. The convergence rate is controlled by a convex combination of q and quax,
which captures the benefits of minibatching. As b, increases from 1 to n, the weight on the
smaller ratio q approaches unity, while the weight on qmax approaches 0. When ¢, qmax = O(1),
which corresponds to the setting when preconditioning helps globally, the total number of

gradient queries scales as
n 1
@) — 1 -]
(o) (2))

Thus, SAPPHIRE’ s convergence rate is completely determined by the quality of the precondi-
tioner, whose impact on the convergence rate comes through the (1 —¢)~! factor. In the case
when 1 — ¢ = Q(1), SAPPHIRE exhibits the optimal number of queries O(nlog(1/e)).

Remark 4.9. If the regularizer corresponds to a projection onto a closed convex set C, then
q and gmax in Theorem 4.8 should be replaced by ¢(C) and qmax(C).

Theorem 4.8 along with our discussion in Subsection 4.1.1 immediately yields the fol-
lowing corollary, which provides two concrete settings where SAPPHIRE exhibits an optimal
convergence rate.

Corollary 4.10. Under the hypotheses of Theorem 4.8 with the additional assumption that
1—-¢=9Q(1), the following statements hold:

1. Suppose L(w) = 5| Xw — b||* + VHQLHZ and r(w) = pllw|1. Run Algorithm 3.1 with
U={0}, n=0(1), m = O(1) inner iterations, and s = O (log (1)) outer iterations.
Then Algorithm 3.1 converges to expected loss € with the total number of full gradient
queries bounded as O(nlog(1l/e)).

2. Suppose L(w) = 1 30 f(zTw) + V”wHQ, with ||x;]] < 1 for alli € [n] and r(w) = 1¢,
where C is a closed convex set with diam(C) < 2. Run Algorithm 3.1 with U = {0},
n = O(1), m = O(1) inner iterations, and s = O (log (%)) outer iterations. Then
converges to expected loss € with the total number of full gradient queries bounded as

O(nlog(1/e)).

4.3.2. Convergence for convex p-weak quadratically regular L. When L(w) is only
convex and smooth, a common setting in large-scale machine learning problems, i.e., Lasso,
SAPPHIRE admits the following ergodic convergence guarantee.

Theorem 4.11 (SAPPHIRE: Convex p-Weak Quadratically Regular Convergence). Instate As-
sumption 1 and Assumption 2. Fizm > 0. Suppose each {;(w) is convexr and p-weakly quadrat-
ically regular. Run Algorithm 3.1 with Option 2 and learnmg rate n = min{up(in_m)

8(m-+2 }
’ ( ) ’
De;ine the Sample avern a/ge as w — Sv g g k=1 wk ) then a’te7 S 0Ute7 it€1 ations,

48(L% + 4)(m + 2) I 12(Lp +2)
S wo * P(o) S

E[R(w) — R(w,)] < (R(wo) — R(wy)) -
Thus, after S = O (mT[%) outer iterations,

EIR(@) — Rw)] < € | o — w0 + Rlwn) - R(w)

This manuscript is for review purposes only.
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16 J. SUN, Z. FRANGELLA, AND M. UDELL

The proof of Theorem 4.11 is provided in Section SMT.

Theorem 4.11 establishes that SAPPHIRE converges ergodically at an O (1/¢) rate, matching
the rate of gradient descent in the smooth convex case and ProxSVRG without preconditioning
[42]. Unfortunately, the dependence of S on m in the theorem implies the total gradient queries

22
M), rather than the expected O(n 4+ Lp/e). This coupling also appears in

+m2L

scale as O(

analysis without preconditioning [42], with a rate of O( , 50 this issue does not stem from
SAPPHIRE employing preconditioning. The issue could be avoided by combining SAPPHIRE with
a black-box reduction such as AdaptReg [3], which is based upon approximately minimizing
a sequence of strongly convex surrogates. However, we have not found this to be necessary
in practice. The suboptimal dependence on m arises because Theorem 4.11 assumes the very
conservative hyperparameter setting: n = O(1/(Lpm)). In practice, we run SAPPHIRE with
n = O(1/Lp), which corresponds to the setting in Theorem 4.8 when L(w) is quadratically
regular. While this more aggressive hyperparameter setting is not supported by Theorem 4.11,
it yields excellent empirical performance in practice (section 5). The theory-practice gap in
the setting of n shows Theorem 4.11 is overly conservative in the requirements it stipulates
for SAPPHIRE to converge.

When global convergence rates are pessimistic. Theorem 4.11 can overestimate the time
needed to solve (rERM) when the regularizer is structured. Consider the Lasso problem
where L(w) = 5-|| Xw — y||>, X € R™P with p > n, and 7(w) = A|w|;. When p > n, the
covariance matrix %X T X is degenerate, so L(w) is convex but not strongly convex. However,
the defining property of the Lasso model is that the solution vector wy is sparse. When
restricted to the support set of the solution w,, the covariance matrix is often no longer
degenerate, so strong convexity holds as long as the iterates stay on the support set, which
implies a linear convergence rate. Optimization algorithms that identify the low-dimensional
manifold on which the solution lives within a finite number of iterations and remain there are
said to possess the manifold identification property [30, 31, 47]. Variance-reduced stochastic
gradient methods like ProxSVRG, SAGA, and SAPPHIRE possess this property [42]. Hence, for
problems like the Lasso, SAPPHIRE will exhibit an initial sublinear convergence phase, followed
by a linearly convergent phase once it has identified the manifold on which the solution lives.
For some problem instances, this identification occurs rapidly so that the linearly convergent
phase dominates—in which case the rate predicted by Theorem 4.11 is highly pessimistic.
The manifold identification property can still be beneficial even when the objective is globally
strongly convex, as with the elastic net. On the low-dimensional manifold, L(w) can be better
conditioned than it is globally, so the preconditioner does not have to be as good to ensure
the preconditioned condition number is close to unity.

4.4. Local convergence of SAPPHIRE. In this subsection, we establish the local condition
number free convergence of SAPPHIRE. We focus on the case that each ¢;(w) is v-strongly

convex and has an M-Lipschitz Hessian. Local convergence is established within the following
neighborhood of the optimum w,:

312
Noy() 1= {nw — oz < m} -
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SAPPHIRE 17

The key to achieving fast local convergence is that within N, (w), the quadratic regularity
constants are guaranteed to be very close to unity, enabling us to establish the following result.

Theorem 4.12. Let ¢g € (0,1/6]. Suppose that each {; is v-strongly convex, and has an
M -Lipschitz Hessian, and that wy € Ng (wy). Instate Assumption 1 and Assumption 2
with ¢ = e9. Run Algorithm 3.1 using Option 2 with U = {0}, m = 10 inner iterations,
s = 2log (%) outer iterations, n =1, and by = @) (7”)(./\/'EO (wy)) log(%)). Then, with probability
at least 1 — 0,
1) = w,l| g2 L) <€

Hence, the total number of stochastic gradient queries within € distance of the optimum is

bounded by
@) <n log (1>> .
€

The proof of Theorem 4.12 is provided in Section SMS.

Theorem 4.12 shows that within in N;,(ws), SAPPHIRE enjoys linear convergence inde-
pendent of the condition number. It provides a generalization of Theorem 19 in [18] to the
strongly convex composite setting. As in [18], the required gradient batchsize only scales as
O (1¥(Ng, (wy))), which is never larger than the condition number  or n and is often signifi-
cantly smaller, as we shall see shortly below when we specialize to GLMs. Having a gradient
batchsize requirement independent of x is crucial in the ill-conditioned setting common in
large-scale machine learning, where we can easily have k > n.

To make Theorem 4.12 more concrete, we present the following corollary, which specializes
to the case when L(w) corresponds to a GLM.

Corollary 4.13. Let X € R™ P, and let X; € RP denote the ith row of X. Under the
2
hypotheses of Theorem 4.12, suppose that £;(w) = £(z] w) + vl LN/ (XTX) <Cj728 for

2 o’ n

B > 1, and V2L(w,) is ridge-leverage incoherent. Then if by =0 (\/ﬁlog (%)), it holds with

probability at least 1 — § that only
~ 1
@) <n log ())
€

stochastic gradient evaluations are required to ensure the output of Algorithm 3.1 satisfies
[0 — Wil g2 ) < €

The proof is provided in Section SM9.

Corollary 4.13 shows that under a spectral decay condition on X that commonly arises
in machine learning problems, SAPPHIRE only needs to use a batchsize of O (1/n) to ensure
a condition number-free convergence with high probability. Thus, we can set b, to be far
smaller than n, while ensuring a fast convergence rate. This concrete example shows that
the dependence upon £ (N, (wy)) yields real improvements over results where the batch size

depends upon k.

5. Experiments. In this section, we verify the effectiveness of SAPPHIRE (Algorithm 3.1)
with experiments on real-world data on a variety of machine learning tasks from LIBSVM [11],
OpenML [50], and torchvision [34]. Our experiments utilize a diverse collection of datasets,

This manuscript is for review purposes only.
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Figure 2. Performance Plot with Small Regularization

which capture a variety of settings: (big-data) n > p, wide-data (p > n), and big and high-
dimensional (n ~ p). Moreover, we consider datasets of varying degrees of sparsity, ranging
from extremely sparse to completely dense. Please see Table SM1 for details.

We organize the experiments as follows:

e Performance comparisons (Subsection 5.1): We show the effectiveness of SAPPHIRE
for solving (rERM). We compare it with existing stochastic first-order optimizers
Catalyst [32], ProxSVRG [52], and SAGA [13], and a stochastic second-order method
MB-SVRP [51].

e Showcase on large-scale applications (Subsection 5.2): We demonstrate SAPPHIRE ex-
hibits superior performance on real world large-scale learning tasks: click prediction,
malicious link detection, and phenotype prediction from genetic data.

e Verification of SAPPHIRE convergence (Subsection 5.3): We provide experiments veri-
fying that SAPPHIRE satisfies the convergence guarantees presented in Section 4.

SAPPHIRE is ran using the hyperparameter settings presented in Section 3, and competing
algorithms are run according to standard recommendations in the literature. See Section SM10
for a detailed overview. Code to reproduce the experiments may be found at the GitHub
Repository https://github.com/udellgroup/sapphire.

5.1. Performance experiments. For the performance experiments, we consider 14 re-
gression and classification tasks. We train a lasso model for regression tasks and l;-logistic
regression for classification tasks. The regularization parameter is fixed at 1072 X y||s/n,
corresponding to a small value of regularization that leads to a harder optimization problem.
As an ablation, we also consider larger values of regularization; see Section SM11 for these
results. For each task, the optimizer is given 120 seconds to solve the problem. We terminate
an optimizer early if the norm of the gradient mapping falls below 1074,

This manuscript is for review purposes only.
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Figure 3. Showcase Fxperiment on Gene Selection

Figure 2 shows that both SAPPHIRE variants outperform other methods on these tasks.
Notably, SAPPHIRE with NySSN preconditioner finishes all tasks in only 25% of the time
budget. In contrast, Catalyst requires 80% of the time budget on regression tasks, and no
other baseline method is able to complete all classification tasks within the time budget.

5.2. Showcase experiments. First, we evaluate SAPPHIRE on a click-through rate predic-
tion task using 2014 Avazu-Kaggle competition data. This dataset is large-scale with 107 x 10°
size and highly sparse with only 0.0001% non-zero entries. We train it using logistic regressions
with elastic-net regularization. As shown in Figure 1, SAPPHIRE achieves fast convergence in
less than 60 seconds and yields more compact feature selections compared to baselines.

Second, we evaluate SAPPHIRE selecting genes to predict phenotypes using UK Biobank
data. This dataset is large-scale, with size 2.63 - 10° x 102, and dense, with 99.6% non-zero
entries. We train it using least-squares regression with elastic-net regularization. Figure 3
shows SAPPHIRE yields the most compact gene selections in 50 seconds and converges fastest.

5.3. Convergence experiments. In this subsection, we empirically verify the convergence
theory developed in Section 4. We consider four datasets: covtype, ova_lung, rcvl, and
yearmsd. These four datasets cover the data regimes: n > p,p > n, and n ~ p. For
simplicity, we only consider SAPPHIRE with the NySSN preconditioner. For covtype and rcvl,
we train an [i-logistic regression model with penalty strength pu = 1071| X7y s/n. For
yearmsd, we train a lasso model with the same regularization strength, while for ova_lung,
we train an elastic-net regression model with g = 107'||X7y||oo/n, v = 10~!/n. For each
problem, the reference point used for the optimum R, was found by running SAPPHIRE until
the norm of the gradient mapping fell below 1072,

Figure 4 presents the results. SAPPHIRE exhibits linear convergence on each of the three
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Figure 4. Verification of convergence of SAPPHIRE. SAPPHIRE exhibits linear convergence on all four
datasets, consistent with the theory and discussion presented in Section 4.

problems, agreeing with the theory developed in Section 4. In the case of covtype, the data
matrix A is numerically rank deficient, but SAPPHIRE still exhibits linear convergence. The
rapid convergence despite the lack of strong convexity in the problem is consistent with the
discussion in Subsection 4.3, where the manifold identification property leads to a much faster
rate of convergence than the worst-case rate predicted by Theorem 4.11.

6. Conclusion. We propose SAPPHIRE, an optimization algorithm to accelerate large-scale
statistical learning for ill-conditioned and non-smooth regularized empirical risk minimization
problems.

We provide a rigorous theoretical analysis for the convergence of the SAPPHIRE algorithm,
demonstrating global and local linear convergence under quadratic regularity and sublinear
convergence under general convex and weak quadratic regular conditions. Empirical results
across diverse datasets validate the superior performance of our algorithm in both convergence
speed and computational efficiency compared to baseline methods like Prox-SVRG and SAGA.

Therefore, we introduce a robust and efficient framework to address the challenges of ill-
conditioned, composite, large-scale optimization problems arising in machine learning. By in-
tegrating variance reduction techniques with preconditioned proximal mappings, the SAPPHIRE
algorithm not only improves optimization performance but also offers a scalable and versatile
solution for modern data-driven applications.

Appendix A. Proofs for global convergence of SAPPHIRE. In this section, we provide
proofs for all results related to the global convergence of SAPPHIRE.
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632 A.1. SAPPHIRE: Global Linear Convergence. The proof is based on a sequence of lem-
633 mata. We begin with the following result, which provides a bound for SAPPHIRE after one
634 inner iteration.

635 Lemma A.1 (Bound for One Inner Iteration). Suppose we are in outer iteration s at inner
636 dteration k. Then the following inequality holds

637 [Hwk+1 - "U*Hi(s)] + 2nE {R(w,(izl) R(w*)}
638 < ) = w3 + 8P Lp[Rw”) = R(w”) + R() — R(w”))

639
640 The proof is given in Section SMG6.

641 Lemma A.l establishes a bound for one inner iteration, which we use to establish the
642 following contraction relation for one outer iteration.

643 Lemma A.2 (Bound for One Outer lteration). Suppose we are in outer iteration s. Then
644 the output of this outer iteration WY satisfies

1 ALpn(m +1) SO e
et i )} (RE) - R(w)

647 Proof. Applying Lemma A.1 for k =0, ...,m — 1, and summing yields

615 E[R@ETV)] — R(w*) < <
646

m—1 m—1

645 Elllwf), — vl ol + 20 Y E [R(wfy) - R(w?)]

k=0 g k=0

m—1 m—1
649 < D0 N =l + 4L 3 [R(wY) = R(w*) + R(i) = R(w")
650 k=0 k=0

651 Taking the total expectation over the inner iterations and rearranging yields

m—1
652 ™ — wsl}0] + 20E(R(w() = R(wa)] +20(1 —4nLp) 37 ER(w)”) ~ R(w,)]
k=1
653 < ') — w*||§£s> +8(m+ Dn*Lp(R(1)) — R(w*)).
655  Our choice of n implies 2n > 2n(1 — 4nLp), yielding
656 E[Hw — wy|? P ] +2n(1 —4nLp) iE R(wy)]
k=1
657 < | — w,]? P T 8(m + D)2 Lp(R(w™)) — R(w*)).

658

650 Rearranging, using the definition of @+ and convexity of R yields

1
6 A(s+1)y | < ~(s) w*
660 E [R(w ) — R(w*)| < S (1= dnLp) || ||P<s>
dnLp(m+1) ~(s)
661 + —— 2 (R(w ) — R(w* .
662 m(1 —4nLp) ( (@) ( )>
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663 Now, by lower quadratic regularity of L and optimality of w*, we have

2
H(8) _ ¥ |2 o)y *
664 w w o < L(w L(w

6 | oo (1—C)w[ (@) = L(w")]

2

665 < 2 (L@®) = L(w*) + r(@®) — r(w*
o0 = L) + () = ()
666 =2 R — R(wH)].
667 (1=
668 Here, the second inequality follows from the fact that r(w(*)) — r(w*) > 0 as w* is optimal.
669 Combining this with our previous bound, we conclude
, . 1 dnLp(m+1) .

670 E[R@ETY) — R(w*)] < < R(®)) — R(w*)).
671 IR )~ R(w”) (1=QOryen(X —4nLp)m (1 —4nLlp)m (RE&) = Rlw)

672 The contraction relation in Lemma A.2 gives us everything we need to prove Theorem 4.8.

673 A.2. Proof for Theorem 4.8.

674 Proof. Set n = ﬁ and m = (11@5: . By Lemma A.2, we perform the recursion and
675 obtain
2 S

o7 BR(1%) - R(w) < () (RG®) - R(w)
)
678 Therefore, if the number of stages satisfies

R(w®) — R(w*
679 5> 3log< (@) (w) ,
630 ¢
681 then we achieve
682 ER (™)) — R(w*) < e.
684 Observing that each stage requires n + 2mb, component gradient evaluations, we imme-

685 diately conclude that the total number stochastic gradient evaluations is given by

o Lpb 1
. o[+ 7285] = (2)

688 The rest of the claim follows by substituting in the expression for £p in Lemma 4.6. |
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SUPPLEMENTARY MATERIALS: SAPPHIRE: Preconditioned Stochastic
Variance Reduction for Faster Large-Scale Statistical Learning*

Jingruo Sun®, Zachary Frangella*, and Madeleine Udell*

SM1. Computing randomized Nystrom approximation. We propose the following algo-
rithm of randomized low-rank approximation to assist the construction of Nystrém precondi-
tioner in Section 3.

Algorithm SM1.1 RandNysApprox
Input: Orthogonalized test matrix Q € RP*"H  rpy = rank(Hg,, ),
Sketch matrix M = V2L(w)) € RPXTH
Compute shift v = /p - eps(omax(M))
M, = M + Q2
Cholesky decomposition C' = chol(Q" M,)
Thin SVD [V, 2, ~] = svd(MC ™!, 0)
A= maxi0,§2 —vi}
return V,A

Algorithm SM1.1 provides the Hessian approximation and construct the Nystrom precon-
ditioner in (3.3) as P = VAVT. Here the function eps(-) represents the positive distance to
the next largest floating point number of the same precision. All eigenvalues of the approx-
imation are non-negative. We apply it in conjunction with a regularizer to ensure positive
definiteness.

SM2. Stochastic linesearch. Recently, [SM9] developed a version of Armijo line search
for the stochastic proximal gradient method. Inspired by this work, we propose a stochas-
tic version of Armijo line search (SLS) [SM9] to update the learning rate in the composite
optimization problem, as shown in Algorithm SM2.1. However, there are two important dif-
ferences from the method in [SM9]: (i) Algorithm SM2.1 only evaluates the minibatch loss
instead of the full loss and (ii) Algorithm SM2.1 uses the preconditioned norm rather than
the Euclidean norm to determine the stepsize. Algorithm SM2.1 also includes adds a learning
rate ceiling Nmax and a learning rate floor 7y, this ensures the learning rate never becomes
too large or too small. We recommend using nmax = 1 and 9yin, = 0.05.

Figure SM1 shows the result of applying SLS to the problems in Subsection 4.3 used to
verify the convergence of SAPPHIRE. Figure SM1 shows that SAPPHIRE with SLS exhibits the

*Submitted to the editors June 10th, 2025.

Funding: MU, JS, and ZF gratefully acknowledge support from the National Science Foundation (NSF) Award
11S-2233762, the Office of Naval Research (ONR) Awards N000142212825, N000142412306, and N000142312203,
the Alfred P. Sloan Foundation, and from IBM Research as a founding member of Stanford Institute for Human-
centered Atrtificial Intelligence (HAI).
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Algorithm SM2.1 Stochastic Line Search (SLS) for Learning Rate

Input: initial learning rate 79, maximum learning rate nmax, minimum learning rate Nmin,

)

preconditioner P,gs , gradient batch S, with size by,

gradient estimate v,(f), current and previous iterates w
loss function ¢, and regularization function r

Initialize: coefficient v € (0,1)
i Ties, G00) < 5 Ties, tiwl”) + 07wl —w) + 5

Update n**1) = min {%n(s), nmax}

(s)

(s)
k+1 koo

and w

Jwy = wi”|?,., then
k

else
s+1) _ s .
Update 77( ) = max {fyn( ), nmm}
end if
Covtype OVA Lung
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Figure SM1. Verification of convergence of SAPPHIRE. SAPPHIRE exhibits linear convergence on all four
datasets, consistent with the theory and discussion presented in Section 4.

same linear convergence as in Figure 4, indicating that Algorithm SM2.1 provides a reliable
strategy for setting the learning rate.

SM3. Proof for Lemma 4.6.
Proof. By Proposition 3.16 in [SM3], it holds that

E|VL(w) — VL(w")||%-1 < 2Lp (L(w) — L(w*) — (VL(w*),w — w*)).

Now, by the optimality of w* = argmin, {L(w) + r(w)}, there exists {* € Or(w*) such
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that VL(w*) + £* = 0. Thus, by the convexity of r(w), we deduce

< L(w) — L(w*) 4+ r(w) — r(w*)
= R(w) — R(w")
Combining these two results,
E|VL(w) — VL(w*)||%-1 < 2Lp[R(w) — R(w*)]. |

SM4. Proof for Lemma 4.7. First, we calculate the expectation of v,(:) as

E[U](gs)] _ E[@L(w,&s))] _ E[@L(?f)(s))] + VL(ID(S))
= VEL(w) — VL@®) + VL)
= VL(w).

Building on Lemma 4.6, we derive

Elof = VL o, = EIVL(w) = VL@®) + VL@#®) - VL(w)|?

) K
< E|VL(w) -~ VL@®)|? o,
()
— VL) = VL@E)? o
(P)
<E[VL(w) ~ VL@ )? .
(P)
< 2]EHVL(w;(:)) - VL(W*)H?P]gs))fl
+ 2| VL)) = VL) ).
()

< 4ALp[R(w) — R(w*) + R(@®)) — R(w*)].

Here, the first inequality uses E||X —EX ||} < E||X||4, which is valid for any random variable
X € R? and symmetric positive definite matrix A. The third inequality uses [ja + b||} <
2(|lal% + 11b]|%4)- The last inequality applies Lemma 4.6 twice.

SM5. A technical lemma. We need the following technical result to establish global linear
convergence of SAPPHIRE, which extends [SM13, Lemma 3] to the preconditioned setting.

Lemma SM5.1. Let L(w) be quadratically reqular and r(w) be convex. For any w € dom(r)
and arbitrary v € RY, define w = prox,l;(w —nP ), gp = %P(w —w), and A =v— VL(w),
where 0 < n < =t

G705, Then we have for any w' € RP,

(1=
2

R(w') > R(w) + (gp, w’ — w) + g”gPH?}1 + |w' — w3 + (A, @ —w').
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Proof. We write the proximal update w explicitly as
P (w—nP~10)

1
= arg min {QHw’ — (w—nP )% + nr(w’)} .

w/

0 = prox

The associated optimality condition states that there exists a £ € Or(w) such that
P (@& — (w—nP ') +né = 0.

and we note that gp = P(w — W) /7, so we have { = gp — v.
Applying quadratic regularity of L, we can lower bound L(w) by

Lw) > L) ~ (VL(w). @~ w) ~ SE D0
> L(@) — (VL(w), & — w) - 2177||w—w||%.

By the lower quadratic regularity of L and convexity of r, we have for any w € dom(r)
and w’ € RY,

(w) + VL) (!~ w) + S w1 ROE) + €T (w0 )
> L) = VE(w) (5= w) = 516 = wl}
9L )T~ w) + C Dt () + €7~ )
= R(@) + VI (0 ) + € (0~ )~ o - wlp + - wl
Note that gp = %P(fw — ), so we have
L, 2 2/ p—1 -1 N -1 n 2
Q*H’LU —w|p = o " (P~"gp,P(P""gp)) = §<9P,P gp) = §||9PHP—1-

Collect all the inner products on the right-hand-side and denote A = v — VL(w), we have

(VL(w), 0’ - 5) + (&0 — @)
= (VL(w),w' — @) + (gp — v,w’ — )

= (gp,w — @) + (v — VL(w),d — ')

= (gp,w —w+w — W) + (A, 0 —w')

= (gp,w' —w) + (gp,nP ' gp)) + (A, & — ')
= (gp,w' —w) +7llgp||p-1 + (A, @ — ).
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Plugging the derivation of %Hﬁ) —wl||% and (VL(w),w' — @) + (£, w — @) back for R(w'),
we obtain

1 1-—
R(u) 2 R(D) + (VL) = @) + (g’ = @) = o - wlfp + LDt — wf
- B 1—
> R() + (g’ = w) + gl + (A — ) = Dgplhs + S o~
i 1— i
= R(@) + {gp. 0 — )+ Dgplps + T !~ wlfh+ (80— w). o

SM6. Proof of Lemma A.1.
Proof. Define the stochastic gradient mapping

G = 1 (ol i) = 1 (uf oty () — B )).

so the proximal gradient step can be written as

() = _ @,

Wy = Wi
Moreover, we define

13](:) — (Plgs))*l U](:)’ p](:) — ( (s)) VF(w](:))-

Applying the previous relation, we deduce that

iy = w0 = = nGi = w3

= [[wy” w3 = 200G 0y = w) o + P 1G I 0-

Note that our assumptions guarantee n < f Applying Lemma SM5.1 with w =
)y =0l = w'® = P( )G(S) w’ = w* and A(S) (S) VL(w,(C)) we have

Wy V=V W= Wp1,JP

~ (@ =) pro + S 1G

(1 - C)’W || *

< R(w) = R(wy) = 5w = w0 = (47wl - w).

wkH—w

This property of gradient mapping derives the iteration that
2
I w2

iy = w o < e = w3 =01 = Ovellwg? = w0

— 2[R(w(),) — R(w*)] — 2p(AY, wl®) — w*)
(s)

<l = w2 o) = 20[R(w),) = R(w*)] = 2p(A wl®)| — w*).

P(S)
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Next, we bound the quantity —277<A](C ), w,(jzl w*). Let w,(j_ﬁl denote the result of taking

a preconditioned proximal gradient step with the full gradient as
w,(C ll = proxP (w,(:) — np,(:)) .

Expanding w,(;il — w* with 717;(;217

27wl = e = =207 el - @) - 2w - w)

<2 A0 o oy — i o — 2008 0y — )

(s =) = (o = mi?) o
(5) (o)

- 277<Ak Wi —w >
= 291lA (s) P 1A(5) —9 A(S) —(s) *
nllAy ||P155)—1||77 k k HP;ES) L Wy — W )

< 27]HA](:)|| (s)*l

=2 A2 0 = 20(AL ) - )
k

Here, we use Cauchy-Schwarz inequality for the first inequality and non-expansiveness of
proximal mapping for the second inequality.
Combining with the previous result, we have
o < Ny = w2 — 20[R(wi,) - R(w?)]
) = W = Wil = N Wh w

oy = w I

+ 27 ||A(S HQ() 1 —277<A§€),w,(€£1 w*).

Taking the expectation over v,g,s) of both sides of the preceding display and applying
Lemma 4.7 obtains

[nwm - w3 } = [l = w0 — 20E[R () = R(w")

+20°E [Hv,ff) — VL )P s
k
117

< Jwl® —w — ZE[R(w),) — R(w*)]

P
+8Lp?[R(w™) — R(w*) + R(®)) — R(w*)].

Rearranging the last display, we conclude the desired result. |

SM7. SAPPHIRE: Sublinear convergence analysis. We now prove Theorem 4.11, which
establishes global sublinear convergence of SAPPHIRE under p-weak quadratic regularity, which
covers the setting when L(w) is only smooth and convex.
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Proof. Assume we are in outer iteration s, then summing the bound in Lemma A.1 yields

Eflwl™ — w,|

m—1
Hol  20E[R () = R(w)] +20(1 — 4ntp) 3~ E[R( R(w,)]
k=1

< [Jo) — w*lliﬁ +8(m + 1)’ Lp(R(@")) = R(w")).

Asn= min{4ﬁp(1m+2), 8(m1+2)} we have that 21 (1 — 4nLp) > n?. Thus,

B[+ — w,|2] + (20 = p)E[R@ ) = R(w,)] +n* Y B[R(w”) — R(w,)

P<3)
< [lat) — w*||P<s> +8(m + )i Lp(R(@)) = R(w*))

< 0 = wellf + (20 = n*)(RE@W) = R(w),

where in the last inequality, we used that value of 1 implies that 2n — n? > 8(m + 1)n?Lp.
Thus, the preceding display can be rearranged to yield

WY ER() = R(wa)) < [0 = w2, + (20— ) (R(@) = R(w?))
— B[ —w2] - (20 = n?) E[R@CY) = R(w,).

Using convexity of R this becomes

]. Ui S S ~(S
R(m22w9>—wa]<uw>—wmﬁs — [0+ — w2

k=1

mn’E

+ (20— 1) [R(w(s)) ~ R(w") —E[R@") = R(w,)]] .

Taking the total expectation, summing over all S outer iterations, and using convexity of R
yields

1
mSy’E | R | —
Sm =0 k=

( Zj}b) miﬂmwm@@+m—#mwm—mW»
Define @ as - S wk Rearranging, we find that

BIR(5) — R(w)] < —llun =l + s (1 1) (Rlun) - Rw.)).

Using the identity ———~ < 1/a + 1/b for a,b > 0 yields
min{a,b}

2 m 2 m
MM@—MWMﬂﬁ%%iﬂwrww@+%ﬁ%i%mmwwmm

2 m
AL sty — w2 + 2 (R(wn) — R(w,) .

IN
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Thus, setting S = O (@) yields
BR() - R(w)] < ¢ (= w0 + (Rlun) - Rw.))). o
0

SM8. SAPPHIRE: Local convergence analysis. In this section, we prove Theorem 4.12,
which shows local condition number-free convergence of SAPPHIRE in the neighborhood

3/2
EolV
Neo(wi) = {w € RP: lw — wilv2p(w,) < oM } :

The overall proof strategy is similar to that of other approximate Newton methods. Namely,
we first show that the iterates remain within A, (w,), where the quadratic regularity constants
are close to unity. Once this has been established, we argue that the output of each stage of
Algorithm 3.1 contracts to the optimum at a condition number-free rate.

SM8.1. Preliminaries. We begin by recalling the following technical lemma from [SM3],
which shows the following items hold in Ny, (w,): (1) the quadratic regularity constants are
close to unity, (2) the Hessians are uniformly close in the Loewner ordering, (3) taking an
exact Newton step moves the iterate closer to the optimum in the Hessian norm, (4) VF;(w),
VF(w) are (1 + o) Lipschitz in Nz, (wy).

Lemma SM8.1. Let w,w’ € N, (wy), and suppose P is a eg-spectral approzimation con-
structed at some wy € Nz, (wy), then the following items hold.

1.

1

1 S ’nmin (NEO (w*)) S ’yumax (N;O (w*)) S (1 + 50)

+ €0

2.
(1 —e9)V2L(w) = V2L(w') = (1 + €0)V2L(w).
3.
lw = w, = V2L(w) " (VL(w) = VL(ws)||v2L) < €ollw — willw2pw).

4.

IVLi(w) = VLi(w) |2, w1 < (1 +€0)lw — willv2r, ), for alli € [n],
IVL(w) = VL(wy) |2 -1 < (14 €0)lw — willg2p(ur)-

SM8.2. Controlling the error in the stochastic gradient. Similar to the global conver-
gence analysis, it is essential that the deviation of the variance-reduced gradient from the
exact gradient goes to zero as we approach w,. Thus, our analysis begins with the following
lemma, which gives a high probability bound for the preconditioned gradient error. It provides
a local analog of Lemma 4.7.
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Lemma SM8.2. Let 5, € (0,1). If wl(:) € N, (wy) and v,(j) is constructed with batchsize
v 1
by =0 (T* (Ngo(g;))log(6)>, then with probability at least 1 — ¢

g

o = VL) < By (ol = wille + 10 = w.p)

Proof. Let X; = V2L(w,)~ /2 (VLi(w,(f)) — VLi(w®) — (VL(w,(j)) - VL(w<S>))). By
definition of Xj,

V2L(w,) Y2 (v,(j) - VL(w,(j))) — bi S X=X

Observe that || X|| = HUIE;S) - VL(w,(f))Hsz(w*)fl, and E[X] = 0 by definition of the variance-

reduced gradient. Therefore, we can control ||v,(€s) - VL(w,(CS))Hvz L(w,)~! Dy a concentration
argument similar to [SM3]. We can then convert the result to the (P~!, P)-dual norm pair
by applying Lemma SMS.1.

We shall use Bernstein’s inequality for vectors to bound ||X|| with high probability. In
order to apply this variant of Bernstein’s inequality, we must establish bounds on || X;|| and
E||X;||?. We begin by bounding || X;||. To this end, observe that,

(1) . (s s A (s
112 < 201V Li(wf”) = VL) 2o p g1 + 2 VL) = VL@ (2o -

Y 2(1 20| w® — ()2
< AT (Neg (wi)) (1 + o) flwy,” — 0 [|S2 (a0,

< 8 (N ()21 + 20)? () = walba gy, + 10 = wslep,,))

Here (1) uses |z +y||* < 2||z]|* +2[|y|?, and (2) uses Lemma 3.3 and item 4 of Lemma SM8.1.
Taking the square root on both sides yields

1261 < 2v2r ey () (L4 20) (g = willgzn ) + 116 = weliv2 ) -

This establishes the required bound on || X;||. We now turn to bounding E||X;||2. To begin,
observe that an argument similar to the one in Lemma 4.7 yields

E| X, )% < 2E|VLi(w) = VLi(we)llv2 L)1 + 2E[VLi(0®)) = VLi(w) |92 L)1
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Again using Lemma 3.3 and Lemma SM8.1, we obtain

2BV Li(wy”) = VLi(ws) [v2rgu) 1 + 2BI VL) = VLi(w,) [v2r )1
< 27 (N () E[[VLi(wf”) = VLi(w) w21, u) -

+ 27 (Ney (W )E[ VL () = VLi(w,) w2, (0,1
< 2m(Wog () (L + 0)E (L) = Li(w,) = (VLi(w.) wf —w,))

+ 27 (Vo (w3)) (1 + £0)E (Ll-(u?(s)) — Li(w,) — (VLi(w,), 0 — w*))
= 27, (N () (1 + 20) (L) = Llw,) = (VL(w.),wf = w.))

27 (N () (1 + €0) (L(21) = L(w,) = (TL(w,), ) — w,))

< 27 (Voo () (14 0)% ([l = wellgzruny + 100 = wallg2r ) -
Hence, the scaled gradient residual X; satisfies
E|IX)1? < 2 (W () (1 + 20)? (Jlwg? = wllwz ) + 18 = w.liv2pg ) -

After giving the bound of || X;|| and E|X;|?, we can apply Lemma 27 from [SM3] with
1
by = O (nweo(z;;»log(é)

g

to reach

B .
1o = VL@ 2pan s < 22 (0 — wnllran + 10 - wilran)
Converting to preconditioned norms via Lemma SMS.1, this becomes

o = VL) < By (e = wille + 10 = w.lp) .

SM8.3. Establishing a one iteration contraction. With Lemma SMS8.2 in hand, we now
establish a contraction relation for iterates in any outer iteration s. This lemma guarantees
the SAPPHIRE iterates remain in Ny, (w,), essential for showing condition number-free local
convergence.

Lemma SM8.3. Let w,(f) € Noy(wy), and By € (0,1). Suppose the gradient batchsize satis-

7y (Ne * kil . 7.
fies by = O < x (/\/O(wﬁ)g) log(%5 )> Then with probability at least 1 — ﬁ

LAY 2 rwn < 2IAY w2 + = IAS 925000

2. wl(:ﬁl € N, (wy).
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Proof. Let A( )1 = prox? (w,(:) — P_IVL(w,gs))> — wy. We begin with the following in-
equality,

a2 = o (-2 -]

= pr())(TI,D <wk — P~ 1 ( )) — proxf (w* — P_1VL(U}*)) HP

< (wk — P_lv,(:)> — (w* - P_IVL(w*)) HP

= ||P(wg — wy) — (VL(wg) — VL(wy)) + VL(wg) — v,(j)

-
Pl - w,) = (VL)) = VL@) |+ el = vE@)|

IN

p1
In the second inequality, we used the non-expansiveness of the scaled proximal mapping. The

preceding display consists of two terms. The first term represents the error in the approximate
Taylor expansion

VL(w (s )) VL(wy) ~ P(w](:) — Wy).

The second term measures the deviation of the stochastic gradient from the exact gradient.
Using Lemma SMS8.2, the second term can be bounded as,

By (1881 + 145 1#)

Thus, we now turn to bounding the Taylor error term. To this end, observe that the triangle
inequality yields

< HVQL(wI(;))(wI(;) —wy) — (VL(wl(eS)) . VL(w*))HPq + H(P . sz(wl(:)))(wl(cS) —w,)

p-1
The first term in this inequality is the exact Taylor expansion error, while the second term
represents the error in approximating the Hessian. We can bound the first term using
Lemma SMS.1 as follows,

Hv? (i) (@l —w.) = (VL) = VL(@w.)| |

)

< [Vl - w) - (VL) - VL@,
k
1 S S — S
- = ' —w, — V2L (VL(w) = VLwI))llgap )
< \/fHAk ”sz(wl(:))
3) 1 + €
<e 0|| Ip

—
W~
=

250||A,<j>up.

IN
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Here (1) uses item 1 of Lemma SMS8.1, (2) uses item 2 of Lemma SMS8.1, (3) uses item of
Lemma SMS8.1 again, and (4) uses gg < %.
We can also bound the Hessian approximation error term via Lemma SM8.1. Indeed,

H (P - VZL(w,(f))) (W — w,) .

= | P2 = PR () P P W) — w,)

p-1
= H (I— P—1/2V2F(w(s))P—1/2)P1/2(w(s) —w,)

HI p- 1/2V2F( (8) 1/2” Hw —w,

P
< eollw”) — wyl|p = eol| AP,

where the last inequality uses item 2 of Lemma SMS8.1. Putting together the two bounds, we
find the approximate Taylor error term satisfies

| Pt = wa) = (VL) = VE@)|| |, < 320lA0 I

Combining the bounds on the approximate Taylor error and the error in the stochastic
gradient, we deduce

HA’“HH (Bg + 3e0) 1A s)||P+r8gHA(s)||P

Now, converting norms yields

[ A8 a1 20085+ 320)IAL i) + BylL + 20 I o210,

3 S 7 S
< A w20 + 251867 w2 wn)- X

o

SM8.4. Showing convergence for one stage. Now that we have established the iterates
produced by SAPPHIRE remain in NV, (wy), we can establish the convergence rate for one stage.

Lemma SM8.4 (One-stage analysis). Let @) € N (wy). Run Algorithm 3.1 with m = 10
inner iterations and gradient batchsize satisfies by = O (¥ (Nzo(wi)) log (1)), Then with
probability at least 1 — ¢,

1. ot e /\/’gsO (wy).
3

2. @) —willgzpi,) < 310 — willverw,)-

Proof. As @) € N, (w), it follows by union bound that the conclusions of Lemma SM8.3
hold for all w(”, where k € {0,...,m — 1}, with probability at least

3

—1
0

1-— 7:1—75>1—5

0(m+1)2 (m+1)2

il

Consequently, applying Lemma SM8.3,

3 s 7 s
189 w210 < SIAS w2100 + 35188 I92100)-
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Now recursively applying the relation in the previous display, and using m = 10 > 1{; %g((lg/ /145)),

we reach

(s) 3\ A =\ 7
1852200 < (3) 188 o2 + {0 (2) ) 218 g0
k=0

INC 7 (s)
< A — L A
_lg!oHv%mg+4al_%ﬂ o Iv2L0w,)
L7 (s) 2A0)
— (35 + 1) 188 Ioezmn < 5188 Iorsgon
Hence 0+ = w,(ﬁ) e Na_ (wy). [
3€0

We now have everything we need to prove Theorem 4.12.

SM8.5. Proof for Theorem 4.12. By Lemma SM8.4, we perform the recursion and obtain

(s 2\° .
89 = wnlvrsion < (3 ) 169~ wilvrsgen

Therefore, with g € (0,1/6], if the number of stages satisfies

0 —
5> 3log (nw w*nwL(m)) |

€

then we achieve
@) — Wil g2, < €

Observing that each stage requires n + 2mb, component gradient evaluations, and that
7P (N (wy)) < m (recall Lemma 3.3), we immediately conclude that the total number stochas-
tic gradient evaluations is given by

o(frorwterme()en() (o))

This completes the proof.

SM9. Proof of Corollary 4.13.

Proof. The hypotheses on the spectrum of %XTX and the assumption on the ridge-
leverage coherence of V2L(w,), allow us to apply Lemma 7 and Proposition 15 of [SM3] to
conclude that 77 (N, (wy)) = O(y/n)). The corollary now follows by invoking Theorem 4.12.1

SM10. Additional experimental details. In this section, we provide additional details for
the experiments performed in section 5.

SM10.1. Algorithmic hyperparameters. In this subsection, we detail how the hyperpa-
rameter settings for the algorithms used in section 5.
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SM10.1.1. Gradient batchsize and Coordinate blocksize. For the performance experi-
ments, we used a gradient batchsize of b, = 256 for datasets with n¢ < 10°, and by = 2048
for datasets with ng, > 10°. For the showcase experiments, we use a gradient batchsize of
by = 10.01ny, |. For the block coordinate methods, we use a blocksize of |0.01ny, |.

SM10.1.2. Learning rate. We set the learning rate for SAGA and SVRG according to the
recommendations in [SM4, SM11]. Note, these papers set the learning rate based on the
expected smoothness constant £ [SM5], which accounts for minibatching, and enables the
use of larger learning rate than the classical recommendations in [SM7, SM2|, which assume
by = 1. For Catalyst, we follow the recommendations in [SM8]. The learning rate for MBSVRP
is set as 7 = min {1/(4L),1}. This setting was found after considerable experimentation, as
we found the recommended learning in [SM12] often lead to divergence. The learning rate for
the block coordinate methods was set as the reciprocal of the block smoothness constant of
the sampled block, as is standard practice in the literature [SM1, SM10].

SM10.1.3. Other hyperparameter settings. Catalyst and MB-SVRP have additional hy-
perparameters, for these we follow the recommendations in the original papers [SM8, SM12].

SM10.2. Datasets used in the experiments. Table SM1 presents the details for all the
datasets used in the main paper. The condition number x is computed as k(X7 X) if n > p
and k(X XT) if p > n. The largest and smallest eigenvalue are estimated using scipy’s svds
function with the solver set to LOBPCG.

SM10.2.1. Preprocessing details. The rows of all data matrices are scaled to have unit-
norm to ameiliorate ill-conditioning from poorly scaled data. Note, the condition number
estimate in Table SM1 is for the datasets after their rows have been scaled to have unit norm.

For the torchvision datasets, classification is not performed on the original datasets. In-
stead, we a perform a feature transformation by passing through the data matrices through
the first 49 layers of a pre-trained ResNet50 model [SM6] available in torchvision.

SM11. Performance plots for medium strength regularization. In this section, we run
the same performance experiment as in section 5, only with a larger value of the regularization:
p = 1071 X7Th|/n. SAPPHIRE still yields the best performance, but its advantage has
narrowed somewhat, as it is now comparable to Catalyst on the Lasso testbed, however it
still maintains its advantage on the Logistic regression testbed. The improved performance of
the first-order methods is unsurprising, as larger regularization leads to a better conditioned
problem, which implies faster convergence of first-order methods.
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Table SM1
Datasets Summary
Dataset Task Nir Nist P K Non-zeros (%) Source
ada Classification 32561 16281 122 5.45e+39 100 LIBSVM
abalone Regression 3341 836 8 1.73e+03 100 LIBSVM
avazu Classification 12642186 1719304 999975  1.10e+08 0.0001 LIBSVM
cadata Regression 16512 4128 8 5.89e+05 100 LIBSVM
covtype Classification 464809 116203 54 1.28e+05 100 LIBSVM
€2006 Regression 16087 3308 150358  3.81e+08 0.83 LIBSVM
epsilon Classification 400000 100000 2000 3.21e+10 100 LIBSVM
gisette Classification 6000 1000 5000 3.71le+06 100 LIBSVM
housing Regression 404 102 13 5.95e+07 100 LIBSVM
ledgar Classification 70000 10000 19986  8.62e+05 0.29 LIBSVM
mg Regression 1108 277 6 1.02e+4-01 100 LIBSVM
mushrooms Classification 6499 1625 112 4.76e+45 100 LIBSVM
phishing Classification 8844 2211 68 2.08e+40 100 LIBSVM
revl Classification 677399 20242 47236 2.53e+05 0.15 LIBSVM
realsim Classification 57847 14462 20958  9.62e+04 0.25 LIBSVM
scotus Classification 6400 1400 126397  2.95e+05 1.03 LIBSVM
space_ga Regression 2485 622 6 5.14e+02 100 LIBSVM
url Classification 1916904 479226 3231961 4.29e+07 0.0035 LIBSVM
w8a Classification 39799 9950 300 5.31e+83 100 LIBSVM
yearmsd Regression 463715 51630 90 6.60e+05 100 LIBSVM
ct_scan Regression 42800 10700 384 2.15e+40 100 OpenML
dorothea Classification 920 230 100000  4.08e+01 0.91 OpenML
imdb_drama Classification 96735 24184 1001 4.26e+-02 1.94 OpenML
ova_colon Regression 1236 309 10935  5.37e+05 100 OpenML
ova_lung Classification 1236 309 10935  5.56e+05 100 OpenML
ovarian Regression 202 51 15154  9.94e+4-04 100 OpenML
prostate Regression 81 21 12600  9.58e+-03 100 OpenML
gsar_tid_11 Regression 4593 1149 1024 1.75e+-04 6.34 OpenML
ujiindoorloc_latitude ~ Regression 16838 4210 525 4.49e+47 100 OpenML
yolanda Regression 320000 80000 100 3.92e+06 100 OpenML
cifar_10 Classification 50000 10000 2048 1.04e+07 100 torchvision
fashion_mnist Classification 60000 10000 2048 1.25e+13 100 torchvision
svhn Regression 73257 26032 2048 5.32e+08 100 torchvision
uk_biobank Regression 269704 67425 3511 3.84e+16 99.6 UK Biobank
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