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Abstract. Regularized empirical risk minimization (rERM) has become important in data-intensive fields5
such as genomics and advertising, with stochastic gradient methods typically used to solve the6
largest problems. However, ill-conditioned objectives and non-smooth regularizers undermine the7
performance of traditional stochastic gradient methods, leading to slow convergence and signifi-8
cant computational costs. To address these challenges, we propose the SAPPHIRE (Sketching-based9
Approximations for Proximal Preconditioning and Hessian Inexactness with Variance-REduced10
Gradients) algorithm, which integrates sketch-based preconditioning to tackle ill-conditioning and11
uses a scaled proximal mapping to minimize the non-smooth regularizer. This stochastic variance-12
reduced algorithm converges globally, and enjoys fast local condition number independent conver-13
gence, delivering an efficient and scalable solution for ill-conditioned composite large-scale convex14
machine learning problems. SAPPHIRE can solve sparse large-scale lasso problems with size 107×106 in15
less than a minute. Extensive experiments on lasso and logistic regression demonstrate that SAPPHIRE16
often converges 5 times faster than other commonly used methods such as Catalyst, SAGA, and SVRG.17
This advantage persists even when the preconditioner is infrequently updated, highlighting its robust18
and practical effectiveness.19
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1. Introduction. Modern datasets in science and machine learning are massive in scale.22

As an example in genetics, whole genome sequencing efforts on large-scale population cohorts23

like the Million Veterans Program, AllofUS program, and the OurFutureHealth project are24

expected to collect data from more than millions of individuals on billions of genetic variants.25

Single-cell sequencing and epigenetic features such as DNA methylation levels, transcription26

factor binding, gene proximity, and other annotations can further increase the scale of the27

problem. Naively training a machine learning model on such data leads to an expensive op-28

timization problem whose solution is uninterpretable and often fails to generalize to unseen29

data. Modern statistics and learning theory provide a solution to this challenge by using30

structured regularization to improve model interpretability and generalization. Mathemati-31

cally, the optimization problem to solve is a regularized empirical risk minimization (rERM)32

problem,33

(rERM) minimize
w∈Rp

R(w) :=
1

n

n∑
i=1

ℓi(w) + r(w),34
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2 J. SUN, Z. FRANGELLA, AND M. UDELL

where n is the number of samples, p is the number of features, and w ∈ Rp represents the35

model weights. Here the ℓi(w)’s are smooth loss functions, and r(w) is a possibly non-convex36

and non-smooth regularizer that encourages a parsimonious solution. Popular regularizers37

include the l1-norm, SCAD regularizer, or the indicator function for the l0-ball. Problem38

(rERM) models many fundamental problems in machine learning, such as Lasso, elastic-net39

regression, l1-logistic regression, dictionary learning, and matrix completion, as well as modern40

applications such as convex neural networks [40, 17], data models for deep learning [24], and41

pruned ensembles of trees [33].42

Realistic problems in high dimensions n and p are generally ill-conditioned, with a loss43

whose Hessian eigenvalues span many orders of magnitude [19, Table 2]. Ill-conditioning44

requires first-order methods like stochastic gradient descent to use a small learning rate to45

avoid divergence, and hence to suffer from slow convergence. For example, if ℓ(·, w) is the46

loss of a generalized linear model (GLM), the conditioning of (rERM) is controlled by the47

conditioning of the data matrix X. In large-scale datasets, the features are often highly48

correlated, so X is approximately low-rank and has a large condition number—possibly larger49

than the sample size n, leading to a difficult optimization problem in (rERM).50
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Figure 1. Showcase experiment of Click Prediction. SAPPHIRE significantly outperforms competing stochas-
tic optimizers on a large-scale click prediction problem with the avazu dataset (n = 12, 642, 186, p = 999, 990).

A traditional way to mitigate ill-conditioning in optimization is to use second-order meth-51

ods, such as Newton’s method or BFGS, which incorporate curvature information. These52

methods are robust and can achieve local superlinear convergence. While these classical53

methods do not scale to the big data regime, new stochastic second-order methods developed54

in the last decade can scale and deliver better practical performance than first-order methods55

[10, 16, 41, 46, 22, 35, 18]. Indeed, recent work [18] demonstrates that combining second-order56

information with variance-reduced gradients can yield fast stochastic second-order methods57

with strong theoretical and practical convergence. However, these methods work best for58

smooth and (strongly) convex problems, and cannot handle structured regularization with a59
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SAPPHIRE 3

non-smooth regularizer, such as the ℓ1 regularizer in the Lasso problem.60

Structured regularization improves both interpretability and generalization. However,61

its effect on ill-conditioning is more nuanced. On one hand, near convergence, the additional62

structure can help the algorithm identify a lower-dimensional basis for the solution and reduce63

the effective dimensionality of the problem. On the other hand, many structured penalties64

are non-smooth, which complicates algorithmic design and can worsen conditioning. Thus,65

even with structured regularization, high-dimensional problems (n, p ≫ 1) still suffer from66

ill-conditioning.67

In this work, we address precisely these computational challenges, using stochastic second-68

order information to develop an efficient, scalable method that handles both non-smoothness69

and large-scale, ill-conditioned data. Our algorithm, SAPPHIRE (Sketching-based Approxi-70

mations for Proximal Preconditioning and Hessian Inexactness with Variance-REduced Gra-71

dients), is a preconditioned variance-reduced stochastic gradient algorithm that generalizes72

the approach in [18] to the (non-smooth) regularized problem (rERM). Figure 1 shows the73

performance of SAPPHIRE with two different preconditioners on a large-scale (and hence ill-74

conditioned) logistic regression problem with an elastic-net penalty. With either precondi-75

tioner, SAPPHIRE converges significantly faster than competing methods, demonstrating its76

robustness and efficiency.77

1.1. Contributions. We summarize our contributions as follows:78

1. We introduce a robust framework, SAPPHIRE, to solve ill-conditioned composite large-79

scale convex optimization problems using variance reduction that requires only stochas-80

tic gradients and stochastic Hessians, and prove convergence of this framework under81

lazy preconditioner updates.82

2. SAPPHIRE accesses the non-smooth regularizer through a scaled proximal mapping83

in the preconditioned norm. While this mapping does not have a closed form, we84

propose to solve it iteratively using accelerated proximal gradient (APG) algorithm85

and demonstrate that only a few APG iterations are required.86

3. We provide default hyperparameter recommendations and verify they yield excellent87

performance across a broad testbed of datasets without further data-dependent tuning.88

4. We prove that SAPPHIRE achieves global linear convergence for strongly convex ob-89

jectives and global sublinear convergence for convex objectives. We also show that90

the algorithm converges locally at a linear rate that is independent of the condition91

number.92

5. Through experiments with 28 diverse datasets, we demonstrate that SAPPHIRE of-93

ten converges over 5 times faster than other popular stochastic optimizers on ill-94

conditioned problems.95

1.2. Roadmap. We organize the paper as follows. Section 2 reviews recent literature,96

highlighting connections to existing methods and the distinctions of our proposed algorithm.97

Section 3 proposes the SAPPHIRE algorithm formally and elaborates on its core components of98

sketch-based preconditioning and scaled proximal mapping. Section 4 establishes comprehen-99

sive convergence results for SAPPHIRE, covering both global and local convergence with various100

convexity assumptions. Section 5 demonstrates the superior performance of the algorithm over101

popular tuned stochastic optimizers through extensive numerical experiments.102
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4 J. SUN, Z. FRANGELLA, AND M. UDELL

1.3. Notation. Throughout the paper, ∥ · ∥ denotes the Euclidean norm, and denote ∥·∥A103

as the matrix norm induced by matrix A, where ∥x∥A =
√
x⊤Ax. For a positive definite104

matrix A, we write A ⪰ 0. The Loewner order is denoted by ⪯, where A ⪯ B if the105

matrix B − A ⪰ 0. Given a positive definite matrix A ∈ Rp×p, its eigenvalues in descending106

order are written as λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A). We denote the smoothness constant of107

L(w) = 1
n

∑n
i=1 ℓi(w) by L. For each ℓi(w) in (rERM), we denote the smoothness constant by108

Li and define Lmax = maxi∈[n] Li. If L(w) is µ-strongly convex we denote its condition number109

by κ = L/µ, and define κmax = Lmax/µ. The condition number of symmetric positive definite110

matirx A is defined as κ(A) = λ1(A)/λp(A). For any scalar β > 0, we define the effective111

dimension dβeff(A) = tr(A(A + βI)−1), which provides a smoothed measure of eigenvalues112

greater than or equal to β.113

2. Related Work. Here we review prior work on stochastic second-order methods, with114

particular emphasis on those developed for convex optimization problems, which is the main115

focus of this paper.116

Variance-reduced stochastic first-order methods for finite sum minimization. Due to the mas-117

sive size of contemporary machine learning datasets, much of the research in the past decade118

has focused on developing efficient algorithms that only require a stochastic first-order ora-119

cle. The most successful of these algorithms are those that employ variance reduction, which120

results in the variance of the gradient approaching zero as the iterates near an optimum [26].121

This technique yields global sublinear and linear convergence when the objective is convex122

and strongly convex, respectively. Popular variance-reduced optimizers include SAGA [13],123

ProxSVRG [52], Catalyst [32], and Katyusha [1]. These algorithms are also popular in prac-124

tice for solving the empirical risk minimization problem (rERM). Indeed, the popular software125

package scikit-learn employs SAGA as the default stochastic gradient-based solver for prob-126

lems such as logistic regression. In the non-convex case, convergence to approximate stationary127

points has been established for many variants of these algorithms [4, 44, 25, 39, 2]. The as-128

sumptions underlying these theoretical guarantees typically prescribe that these methods use129

a minimal learning rate that goes to zero with n. However, in practice, these algorithms are130

often run with a fixed learning rate as though the objective were convex, as this yields better131

performance [25, 39].132

Stochastic second-order methods for finite sum minimization. Stochastic first-order methods133

suffer in the face of ill-conditioning. To address this limitation, many authors have worked on134

stochastic second-order algorithms capable of scaling to large-scale machine learning problems.135

We classify these schemes by their target problems and methods used to compute gradients136

and Hessian. We summarize these results in Table 1. Some methods require exact gradients137

at every iteration; some require only stochastic gradients; and some (“snapshot”) require138

stochastic gradients and occasional exact gradients. All methods in the table require only139

stochastic samples of the Hessian. Many assume interpolation (infw R(w) = 0) to prove140

convergence to the global optimum.141

These work vary in how they use second-order information: some directly apply the inverse142

of the subsampled Hessian to the stochastic gradient [46, 8, 35], or they use the subsampled143

Hessian-vector product to update the preconditioner rather than using the difference between144

two stochastic gradients [36, 9, 35]. However, the theory underlying these methods requires145
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SAPPHIRE 5

Table 1
Stochastic Second-Order Methods in ERM Literature

Papers Loss Regularizer Gradient Fixed batchsize Interpolation

[10, 16, 6, 41, 22, 56, 12, 57] Convex None Exact No No

[36, 9, 46, 8, 35] Convex None Stochastic No Yes

[14, 19, 18, 21, 51, 29] Strongly convex Smooth Snapshot Yes No

This paper Convex Non-smooth Snapshot Yes No

large or growing gradient batch sizes [46, 9, 8], periodic full gradient computation [36], or146

interpolation [35], which are unrealistic assumptions for large-scale convex problems. Further,147

many of these methods lack practical guidelines for setting hyperparameters such as batch148

sizes and learning rate, leading to the same tuning issues that plague stochastic first-order149

methods.150

Recent work has developed more practical stochastic second-order algorithms that use151

variance-reduction and stochastic second-order information to improve convergence [14, 19,152

18, 21]. The PROMISE framework in [18] leads to globally linearly convergent algorithms with153

constant gradient batch sizes and comes with theoretically-motivated default hyperparameter154

settings that outperform tuned stochastic first-order methods.155

However, most of these improved algorithms still assume smoothness and strong convexity156

to show their convergence results. For instance, SVRN [14, 21] and PROMISE [18] require smooth157

and strongly convex objectives. SketchySGD [19] can be used in the convex case but only con-158

verges to a noise ball around the optimum. [51] and [29] can handle composite problems with159

a non-smooth regularizer in practice, but their convergence analyses are restricted to smooth160

and strongly convex problems. Therefore, SAPPHIRE fills a significant gap in the literature by161

providing condition-number-free linear convergence on convex composite problems (rERM).162

Provably convergent stochastic second-order methods for smooth non-convex finite sum163

minimization have been developed. Most methods are based on using a randomized ap-164

proximation to the Hessian (via subsampling or sketching) together with cubic regularization165

[28, 48, 53], Newton-CG [55, 43], or trust region methods [7, 54, 45] to (for example) guar-166

antee convergence to a local minimum. However, many of these methods require solving a167

challenging subproblem at each iteration, such as a cubic Newton step or a trust-region prob-168

lem. Consequently, these methods are often slower than stochastic first-order methods despite169

converging in fewer iterations.170

2.1. Comparison with SAPPHIRE. Table 2 positions SAPPHIRE relative to existing work171

on state-of-the-art stochastic second-order optimizers for solving instances of (rERM) with a172

loss that depends only on the inner product of the parameters and the data, a model class173

that includes all (regularized) generalized linear models174

(2.1)
1

n

n∑
i=1

ℓ(xTi w) +
ν

2
∥w∥2 + r(w),175

where xi ∈ Rp is the ith row of data matrix X. A restriction to l2-regularized GLMs176

makes comparison to previous work as straightforward as possible, as MB-SVRP, PROMISE, and177

Proximal Subsampled Newton restrict their analysis to GLMs. The table compares meth-178
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6 J. SUN, Z. FRANGELLA, AND M. UDELL

ods based on the properties they require to achieve condition number-free local convergence1.179

Table 2 considers whether the method allows for a non-trivial convex regularizer r(w), its180

required gradient batchsize, and the size of the neighborhood of local convergence.181

Table 2
SAPPHIRE vs. State-of-the-art competitors for solving (2.1). Of the methods in the table, SAPPHIRE is

the only variance-reduced stochastic gradient algorithm whose local convergence guarantees allow for a non-
trivial convex regularizer. SAPPHIRE also has the best gradient batchsize requirement without requiring a smaller
neighborhood of local convergence.

Method Regularizer Gradient Batchsize
Radius of

Local Convergence

SAPPHIRE (Algorithm 3.1) Convex and Proxable Õ (τν⋆ ) O
(

ν3/2

M

)
Proximal SSN [29] Convex and Proxable n O

(
ν
M

)
MB-SVRP [51] None O

(
χν(∇2L(w⋆))dνeff(∇

2L(w⋆))κ
1/3
max

)
O

(
ν4

L2
maxM

)
SVRN [14, 21] None Õ(κmax) O

(
ν3/2

M

)
SketchySVRG [18] None Õ (τν⋆ ) O

(
ν3/2

M

)

3. SAPPHIRE: A Fast Algorithm for Large-Scale Statistical Learning. In this section, we182

formally introduce the SAPPHIRE algorithm.183

3.1. SAPPHIRE algorithm. SAPPHIRE is a preconditioned variance-reduced stochastic gra-184

dient algorithm based on the classic ProxSVRG algorithm from [52]. The most significant185

innovation of SAPPHIRE is the design of an effective preconditioner for the problem. Precondi-186

tioning is critical to problems with large-scale data, often improving the runtime by orders of187

magnitude. However, preconditioning complicates the computation of the proximal operator.188

In the following sections, we discuss how to construct the preconditioner, efficiently solve189

the associated scaled proximal mapping, and set algorithmic hyperparameters.190

3.2. Efficient preconditioning. Preconditioning is a powerful technique to accelerate the191

convergence of optimization algorithms on ill-conditioned problems. A good preconditioner192

must effectively approximate the local Hessian while being fast to compute and to invert.193

Classic methods from optimization, like Newton’s method and BFGS, precondition the194

gradient using the (approximate) inverse Hessian. As a result, these methods enjoy fast local195

convergence rates that are independent of the condition number. Unfortunately, the Hessian196

or Hessian approximation used by these methods is expensive to compute and to invert for197

large-scale problems. These methods fail to scale to the problems commonly encountered in198

machine learning. Recent work [16, 46, 18] has shown in the smooth non-composite, effective199

preconditioners can be constructed only using a small fraction of the data, reducing the cost200

of preconditioning substantially. SAPPHIRE adopts the Subsampled Newton and the Nyström201

Subsampled Newton preconditioners, motivated by the authors’ prior work [18].202

3.2.1. Subsampled Newton Preconditioner. The subsampled Newton (SSN) precondi-203

tioner first introduced in [46], approximates the Hessian matrix ∇2L(w) ∈ Rp×p of the smooth204

1We compare based on local and not global convergence as global convergence analyses are often looser and
sometimes absent from previous work.
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Algorithm 3.1 SAPPHIRE

1: Input: starting point w0, gradient and Hessian batch Sh, Sg with size bh, bg,
preconditioner P , preconditioner update times U , learning rate η(0),
snapshot update frequency m

Initialize: snapshot w̃ = w̃0

2: for s = 0, 1, . . . do
3: Compute full gradient ḡ = ∇L(w̃)
4: Set w0 = w̃
5: for k = 0, 1, . . .m− 1 do
6: if ms+ k ∈ U then
7: Sample batch Sh to obtain indices for ∇̂2L(w

(s)
k )

8: Compute preconditioner P
(s)
k : SSN (3.1) or NySSN (3.3) with ∇̂2L(w

(s)
k )

9: end if
10: Sample stochastic gradient batch Sg

11: Compute estimator ∇̂L(w
(s)
k ) = 1

bg

∑
i∈Sg

∇ℓi(w
(s)
k ) and ∇̂L(w̃) = 1

bg

∑
i∈Sg

∇ℓi(w̃)

12: Compute v
(s)
k = ∇̂L(w

(s)
k )− ∇̂L(w̃) + ḡ

13: w
(s)
k+1 = prox

P
(s)
k

ηr (w
(s)
k − η(s)(P

(s)
k )−1v

(s)
k ) ▷ Apply Algorithm 3.2

14: Optional:
15: Update learning rate via stochastic linesearch ▷ Apply Algorithm SM2.1

η(s+1) = SLS(η(s))

16: end for
17: Option 1: w̃ = 1

m

∑m
k=1w

(s)
k ▷ Update snapshot as average of inner iterates

18: Option 2: w̃ = w
(s)
m ▷ Update snapshot as last iterate

19: end for

part of the objective in (rERM) using a subset Sh ⊂ {1, . . . , n} of the data with batch size205

bh = |Sh|. The preconditioner is constructed as206

P =
1

bh

∑
i∈Sh

∇2ℓi(w) + ρI,(3.1)207

208

where ρ > 0 is a regularization parameter that mitigates noise in the smaller eigenvalues of209

this preconditioner.210

By using only a subset of the data, this approach significantly reduces computational cost211

compared to a full computation of the Hessian (as in Newton’s method), yet still identifies212

essential information about the local curvature. To understand the approximation qualities213

of the SSN preconditioner, we first recall the notion of ρ-Hessian dissimilarity from [19].214

Definition 3.1. Let L(w) be as in (rERM), where each ℓi : Rp 7→ R is a smooth convex215

function. Let ρ ≥ 0 and w ∈ Rp, then for ρ-Hessian dissimilarity at w is given by216

τρ(∇2L(w)) = max
i∈[n]

λmax

(
(∇2L(w) + ρI)−1/2(∇2ℓi(w) + ρI)(∇2L(w) + ρI)−1/2

)
.217
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8 J. SUN, Z. FRANGELLA, AND M. UDELL

Moreover, given a subset S of Rp, we define the ρ-maximal Hessian dissimilarity over S by:218

τρ⋆ (S) = sup
w∈S

τρ(∇2L(w)).219

Remark 3.2. When S = Rp, we will write τρ⋆ for shorthand.220

ρ-Hessian dissimilarity measures how much an individual Hessian ∇2ℓi(w) deviates from the221

average Hessian ∇2L(w). When the ∇2ℓi(w) are relatively similar to each other, the smaller222

τρ(∇2L(w)) is—in the extreme case all the ∇2ℓi(w) are the same, τρ(∇2L(w)) = 1. Con-223

versely, when an outlier ∇2ℓi(w) exists, the dissimilarity can be as large as n. The following224

lemma from [19] summarizes these facts.225

Lemma 3.3. For any ρ ≥ 0 and w ∈ Rp, the following inequalities holds226

τρ(w) ≤ min

{
n,

M(w) + ρ

µ+ ρ

}
,227

where M(w) := λmax(∇2ℓi(w)).228

τρ⋆ ≤ min

{
n,

Lmax + ρ

µ+ ρ

}
.229

The ρ-Hessian dissimilarity can be far smaller than the upper bound in Lemma 3.3 suggests.230

See [19] for more details. This is significant as τρ(∇2L(w)) controls the sample size required231

to obtain a non-trivial approximation to the Hessian.232

Lemma 3.4. Let w ∈ Rp, ζ ∈ (0, 1) and ρ > 0. Construct ∇̂2L(w) with233

bH = O
(
τρ(∇2L(w))

ζ2
log

(
dρeff(∇2L(w))

δ

))
.234

Then, with probability at least 1− δ,235

(1− ζ)PSSN ⪯ ∇2L(w) + ρI ⪯ (1 + ζ)PSSN.236

3.2.2. Nyström Subsampled Newton Preconditioner. SAPPHIRE achieves superior per-237

formance using a different preconditioner: the Nystrom Subsampled Newton (NySSN) pre-238

conditioner introduced in [19, 18]. The Nyström preconditioner computes a low-rank approxi-239

mation of the Hessian matrix by projecting the subsampled Hessian onto a low-rank subspace240

in the span of Ω. The Nyström Subsampled Newton preconditioner is given by241

P = (∇̂2L(w)Ω)(Ω⊤∇̂2L(w)Ω)−1(Ω⊤∇̂2L(w)) + ρI(3.2)242243

where Ω ∈ Rp×r is a random test matrix. Typical choices for Ω include standard normal244

random matrices, randomized trigonometric transforms, and sparse-sign matrices [49, 20].245

Constructing the NySSN preconditioner via (3.2) is numerically unreliable due to the246

presence of the pseudoinverse. Instead we apply the numerically stable procedure from [49]247

to compute the Nyström approximation: (∇̂2L(w)Ω)(Ω⊤∇̂2L(w)Ω)−1(Ω⊤∇̂2L(w)). The nu-248

merically stable procedure is presented in Algorithm SM1.1 in Section SM1. It provides an249
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SAPPHIRE 9

approximate low-rank eigendecomposition of ∇̂2L(w): V̂ Λ̂V̂ ⊤. Using the stable procedure,250

the NySSN preconditioner is given by251

(3.3) P = V̂ Λ̂V̂ ⊤ + ρI.252

The preconditioner and its inverse can be applied to vectors in O(pr) time and requires O(pr)253

storage [19, 18].254

This low-rank preconditioner is faster to invert for large-scale problems compared to the255

SSN preconditioner, especially when bH is large or the data is dense, and significantly re-256

duces the computational cost of preconditioning. Like the SSN preconditioner, the NySSN257

preconditioner admits strong theoretical guarantees. We have the following result from [19].258

Theoretical guarantees.259

Lemma 3.5. Let w ∈ Rp, ρ > 0, and γ ≥ 1. Construct ∇̂2L(w) with260

bh = O
(
τρ(∇2L(w)) log

(
dρeff(∇2L(w))

δ

))
261

samples and the Nyström approximation with rank r = O
(
dγρeff(∇̂2L(w)) + log

(
1
δ

))
. Then262

with probability at least 1− δ,263

1

2γ
PNySSN ⪯ ∇2L(w) + ρI ⪯ 3

2
PNySSN.264

3.2.3. Choosing a preconditioner. It is natural to wonder when the SSN preconditioner265

is preferable to the NySSN preconditioner, and vice versa. A naive first appeal to the theory266

would suggest that the SSN preconditioner should exhibit superior performance (but perhaps267

is more expensive to apply), as the NySSN preconditioner truncates the subsampled Hessian,268

and hence loses information. However, the situation turns out to be much more nuanced in269

practice. Prior studies [18, 19] have shown that the NySSN preconditioner and SSN precon-270

ditioner often perform comparably to each other.271

A general comparison of the preconditioners is given in Table 3. In terms of computation272

cost, the NySSN preconditioner is less expensive to apply and store when the Hessian is273

dense. Conversely, when the Hessian is sparse, the SSN preconditioner is less expensive to274

store and can also be faster to apply, however the latter advantage may vanish in highly275

parallel computing environments.276

Table 3
Comparison of Preconditioners

Construction Cost Computation Cost Memory Requirement

SSN NA O(bhp) O(bhp)
NySSN O(bhrp) O(rp) O(rp)

While prior studies have been unable to demonstrate a concrete advantage of one precon-277

ditioner over the other, in this paper we observe that the NySSN preconditioner generally out-278

performs the SSN preconditioner across a wide testbed of problems (see Section 5)—consisting279

of datasets that range from very dense to very sparse, and vary in size from small and to large.280

Given these results, and prior findings, we recommend using the NySSN preconditioner.281
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3.3. Scaled Proximal Mapping. In contrast to ProxSVRG, to update the parameters,282

SAPPHIRE must evaluate the scaled proximal mapping:283

wk+1 = proxP
ηr(wk − ηP−1vk) := argmin

w∈Rp

{
r(w) +

1

2η
∥w − P−1 (wk − ηvk) ∥2P

}
284

= argmin
w∈Rp

{
ηr(w) + ⟨ηvk, w − wk⟩+

1

2
∥w − wk∥2P

}
.(3.4)285

286

Unlike the traditional proximal operator, which often has a closed-form solution, (3.4) must be287

solved iteratively. For SAPPHIRE to be practical, it is essential that (3.4) be solved efficiently.288

SAPPHIRE uses the Accelerated Proximal Gradient (APG) algorithm [5, 37] to solve (3.4),289

motivated by three factors. The first is that it is easy to apply the preconditioner P to290

vectors, so computing the gradient of the smooth part of (3.4) is cheap. The second is that we291

can easily set the learning rate without resorting to line search—the smoothness constant is292

λ1(P )+ρ, which is easy to compute for our preconditioners. The third is that (3.4) is λ1(P )+ρ-293

smooth and ρ-strongly convex and APG converges at the optimal rate of Õ
(√

λ1(P )/ρ
)
. We294

present pseudocode for APG applied to (3.4) in Algorithm 3.2.295

Algorithm 3.2 Accelerated Proximal Gradient (APG) for solving (3.4).

1: Input: starting point x0, preconditioner P , and regularization function r
2: Initialize: y0 = x0, s0 = 1
3: Set α = (λ1(P ) + ρ)−1

4: for t = 0, 1, . . . T do
5: Calculate xt+1 = proxαηr (yt − α(ηvt + P (xt − wk))

6: Set st+1 =
1
2(1 +

√
1 + 4s2t )

7: Update yt+1 = xt+1 +
st−1
st+1

(xt+1 − xt)
8: end for

In practice, we find running just twenty iterations of Algorithm 3.2 allows SAPPHIRE to296

achieve fast convergence.297

3.4. Hyperparameter recommendations. For the Hessian batchsize and rank, we recom-298

mend the values of bh = 256, r = 10. We recommend updating the preconditioner every299

5 epochs for non-quadratic objectives. For quadratic objectives, the preconditioner update300

frequency should be infinite, as the Hessian is constant. We recommend using 20 APG it-301

erations for evaluating the scaled proximal mapping in Algorithm 3.1. For the learning rate302

η, we recommend a default value of 1/4. This recommendation is inspired by Theorem 4.8303

with the additional assumption that LP = 1, which would be the case if we had the perfect304

preconditioner. This theory-inspired heuristic is used in all experiments in Section 5, and305

leads to excellent performance. As an alternative strategy, we present a stochastic linesearch306

heuristic in Section SM2, which also works very well in practice.307

4. Theory. In this section, we provide a convergence analysis for SAPPHIRE. Our analysis308

shows SAPPHIRE converges to the global optimum linearly when L(w) is smooth and R(w) is309

strongly convex, and sublinearly when L(w) is smooth and R(w) is convex. We then provide310
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concrete examples that illustrate when preconditioning improves convergence. In particular,311

when L(w) is smooth and R(w) is strongly convex, we establish that SAPPHIRE enjoys local312

condition-number free convergence.313

4.1. Quadratic Regularity. We begin by defining an important regularity condition [18].314

Definition 4.1 (Quadratic Regularity). Let f : C 7→ R be a smooth convex function, where C315

is a closed convex subset of Rp. The function f is quadratically regular if there exist constants316

0 < γℓ ≤ γu < ∞ such that for all w0, w1, w2 ∈ Rp,317

(4.1)
γl(C)
2

∥w2−w1∥2∇2f(w0)
≤ f(w2)−f(w1)−⟨∇f(w1), w2−w1⟩ ≤

γu(C)
2

∥w2−w1∥2∇2f(w0)
.318

Here, γu(C) and γl(C) are called the upper and lower quadratic regularity constants, respec-319

tively. Moreover, if f(w) = 1
n

∑n
i=1 fi(w) and each fi are (γui , γli)-quadratically regular, we320

define321

γumax(C) = max
i∈[n]

γui(C), γlmin
(C) = min

i∈[n]
γli(C).322

We also define the quadratic regularity ratio and the maximal quadratic regularity ratio as323

q(C) := γu(C)
γl(C)

, qmax :=
γumax(C)
γl(C)

.324

Remark 4.2. If C = Rp, we will omit explicitly writing C when presenting the quadratic325

regularity constants/ratios.326

Quadratic regularity generalizes the traditional assumptions of smoothness and strong327

convexity to the Hessian norm. This assumption is critical to show convergence under infre-328

quent preconditioner updates, as it allows f to be upper and lower bounded in terms of the329

Hessian evaluated at where the preconditioner was constructed. Most importantly, quadratic330

regularity holds whenever the function in question is smooth and strongly convex.331

Lemma 4.3 (Smoothness and strong-convexity imply quadratic regularity). Let f : C 7→ R332

be a β-smooth µ-strongly convex function, where C is a closed convex subset of Rp. Then f is333

quadratically regular.334

Unfortunately, when f is only smooth and convex, quadratic regularity fails: the Hessian is335

only guaranteed to be psd, and where it has a nullspace, it cannot define a norm. Instead, in336

this case, our convergence analysis rests on the weaker notion of ρ-weak quadratic regularity.337

Definition 4.4 (ρ-weak quadratic regularity). Let f : C 7→ R be a smooth convex function,338

where C is a closed convex subset of Rp. Then f is ρ-weakly quadratically regular if the339

regularized function340

fρ(w) = f(w) +
ρ

2
∥w∥2 is quadratically regular.341

We denote the corresponding quadratic regularity constants by: γρu, γ
ρ
l , γ

ρ
umax , and γρlmin

.342

We immediately conclude the following result from this definition and Lemma 4.3.343

Lemma 4.5 (Smoothness and convexity imply ρ-weak quadratic regularity). If f is β-smooth344

and convex, then it is ρ-weakly quadratically regular for any ρ > 0.345
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Three different scenarios.. When analyzing (rERM) under the hypothesis of convexity, the346

standard regularity assumptions are: 1. The ℓi(w) are smooth and strongly convex for all347

i ∈ [n], 2. The ℓi are smooth for all i ∈ [n] and L(w) is strongly convex, and 3. The ℓi(w) are348

smooth for all i ∈ [n]. Lemma 4.3 and Lemma 4.5 show these assumptions can be expressed349

in the language of quadratic regularity:350

1) ℓi(w) is βi-smooth and strongly convex for all i ∈ [n] =⇒ ℓi(w) is quadratically351

regular for all ı ∈ [n] and L(w) is quadratically regular.352

2) ℓi(w) is βi-smooth and convex for all i ∈ [n] and L(w) is strongly convex =⇒ ℓi(w)353

is ρ-weakly quadratically regular for all ı ∈ [n] and L(w) is quadratically regular.354

3) ℓi(w) is βi-smooth and convex for all i ∈ [n] =⇒ ℓi(w) is ρ-weakly quadratically355

regular for all ı ∈ [n] and L(w) is ρ-weakly quadratically regular.356

Our analysis focuses on settings 1) and 3), as setting 2) is identical to setting 1) except for a357

change in one constant. We will elaborate on this point more below.358

4.1.1. When quadratic regularity improves over the condition number. In this subsec-359

tion, we provide intuition for the quadratic regularity ratio through examples that contrast it360

with the condition number, the quantity that typically appears in the analysis of optimization361

algorithms. This discussion expands on that of [18]. As our analysis depends on the quadratic362

regularity ratio and not the condition number, our upper bounds are correspondingly tighter363

when the quadratic regularity ratio is smaller than the condition number.364

Least-squares loss. Let L(w) = 1
2n∥Xw−y∥2+ ν∥w∥22

2 , where X ∈ Rn×p and ν ≥ 0. Since L365

is a sum of quadratic functions, it has a constant Hessian and equals its own Taylor expansion.366

It immediately follows that γli = γui = 1. Hence, q = qmax = 1. This ratio is much smaller367

than the condition number σmax(X)2+nν
σmin(X)2+nν

when the data matrix A is ill-conditioned.368

GLM on a bounded domain. A function f is M -quasi-self concordant (M -qsc) over C if369

D3f(x)[u, u, v] ≤ M∥u∥2∇2f(x)∥v∥ ∀x ∈ C and ∀u, v ∈ Rp,370

where D3f(x) is the trilinear form representing the third derivative of f [38]. Let R > 0 and371

suppose that D = diam(C) ≤ log(R)/M . Then the arguments of [18] show that372

q(C) ≤ R2, qmax(C) ≤ R2.373

Any GLM (which includes non-quadratic problems like logistic and Poisson regression) with374

a data matrix X whose rows satisfy ∥xi∥ ≤ 12 for all i ∈ [n] is 1-quasi-self-concordant [27, 15].375

Thus, for R = e, we have q(C) ≤ 8. In contrast, the condition number of L over C behaves376

like: κL(C) = Θ
(
σ2
max(X)+nν

σ2
min(X)+nν

)
, which is large when the data matrix A is ill-conditioned. This377

analysis shows that for objectives of interest, the quadratic regularity ratio may be a constant378

independent of the condition number even when the function is not well approximated by a379

quadratic.380

2This is a standard normalization step employed in packages like scikit-learn for stochastic optimizers
like SAGA.
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4.2. Assumptions. This subsection introduces assumptions needed for our analysis.381

Assumption 1 (Convexity and smoothness). The non-smooth function r(w) is lower semi-382

continuous and convex, and its effective domain dom(r) = {w ∈ Rd | r(w) < +∞} is closed.383

Assumption 1 is standard and holds for all practical convex regularizers of interest.384

Assumption 2 (ζ-spectral approximation). There exists ζ ∈ (0, 1) such that for each j ∈ U ,385

the preconditioner Pj constructed at wj satisfies386 {
(1− ζ)Pj ⪯ ∇2L(wj) ⪯ (1 + ζ)Pj , if L(w) is quadratically regular,

∇2L(wj) ≤ (1 + ζ)Pj if L(w) is ρ-weakly quadratically regular.
387

Lemma 3.4 and Lemma 3.5 show that the SSN and NySSN preconditioners, when con-388

structed properly, satisfy the conditions of Assumption 2 with high probability. Thus, Assump-389

tion 2 can be viewed as conditioning on the good event that the appropriate approximation390

bound holds. A similar assumption was made in [18]. All our theorems can be shown to391

hold so long as Assumption 2 holds with high probability: when the failure probability is392

sufficiently small, we can apply the law of total expectation to obtain the same rate with a393

slightly worse constant factor. We rely instead on Assumption 2 as it leads to simpler proofs394

and allows us to establish the convergence of SAPPHIRE with any preconditioner that satisfies395

Assumption 2, rather than only for the SSN and NySSN preconditioners.396

4.3. Convergence of SAPPHIRE. To establish convergence of SAPPHIRE, we must control397

the smoothness parameter of the stochastic gradient in the preconditioned norm in expecta-398

tion. A constant LP that provides an upper bound on this parameter is known as the pre-399

conditioned expected smoothness constant [18, 19]. The preconditioned expected smoothness400

generalizes the Euclidean norm-based expected smoothness constant from [23] to precondi-401

tioned space. In the case when r(w) = 0 in (rERM), [18, 19] have established bounds on402

the preconditioned expected smoothness constant. The following lemma provides an explicit403

expression for LP in the general composite case.404

Lemma 4.6 (Preconditioned Expected Smoothness). Instate Assumption 1 and let each405

ℓi(w) in (rERM) be convex and twice-continuously differentiable. Let ρ > 0 and P be a406

preconditioner constructed at wP ∈ Rp satisfying407

∇2L(wP ) ⪯ (1 + ζ)P.408

Then for any w ∈ Rp, if each ℓi(w) in (rERM) is quadratically regular, then409

E∥∇̂L(w)− ∇̂L(w⋆)∥2P−1 ≤ 2LP [R(w)−R(w⋆)],410

where411

LP =

(
n(bg − 1)

bg(n− 1)
γu + τρ⋆

n− bg
bg(n− 1)

γumax

)
(1 + ζ).412

The proof is provided in section SM3.413

Lemma 4.6 extends the classical smoothness condition in deterministic optimization to414

the stochastic and preconditioned setting and establishes a direct relationship between the415
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preconditioned gradient norm variance and the suboptimality of R(w)−R(w⋆). It generalizes416

the results of [18, 19] to the convex composite setting. If the individual ℓi’s are ρ-weakly417

quadratically regular, then LP in Lemma 4.6 will be constructed by γρu, τ
ρ
⋆ , and γρumax .418

Lemma 4.7 (Preconditioned Stochastic Variance). Instate Assumption 1 and Assump-419

tion 2, and define the variance-reduced stochastic gradient at inner iteration k in outer it-420

eration s, v
(s)
k = ∇̂L(w

(s)
k )−∇̂L(ŵ(s))+∇L(ŵ(s)). The variance of this stochastic gradient is421

bounded in the preconditioned norm as422

E∥v(s)k −∇L(w
(s)
k )∥2

(P
(s)
k )−1

≤ 4LP [R(w
(s)
k )−R(w⋆) +R(ŵ(s))−R(w⋆)].423

424

The proof is provided in section SM4.425

Lemma 4.7 shows that by employing the variance-reduced stochastic gradient v
(s)
k , we426

are guaranteed that the variance of the stochastic gradient goes to zero as we approach the427

optimum. This property is essential to establishing convergence. If the gradient variance does428

not go to zero as we approach the optimum, we can only reach a neighborhood of the optimum429

with a fixed stepsize.430

4.3.1. Convergence for quadratically regular L. Here, we establish global convergence431

of SAPPHIRE under quadratic regularity of L. For brevity, we only consider the case when432

each ℓi(w) is quadratically regular. The argument and resulting statements for the case when433

the ℓi(w) are only ρ-weakly quadratically regular are identical, except that we replace LP by434

LPρ .435

Theorem 4.8 (Global Linear Convergence). Instate Assumption 1 and Assumption 2. Sup-436

pose each ℓi(w) is quadratically regular. Run Algorithm 3.1 with learning rate 0 < η < 1
4LP

.437

Then the output of Algorithm 3.1 satisfies438

E[R(ŵ(s))−R(w⋆)] ≤
(

1

(1− ζ)γℓη(1− 4ηLP )m
+

4ηLP (m+ 1)

(1− 4ηLP )m

)s

(R(w0)−R(w⋆)) .439

Thus, setting η = O(1/LP ) and m = O( LP
(1−ζ)γℓ

), we have440

E[R(ŵ(s))−R(w⋆)] ≤
(
2

3

)s

(R(w0)−R(w⋆)) .441
442

Hence, the error falls below ϵ > 0 after s ≥ 3 log
(
R(ŵ(0))−R(w⋆)

ϵ

)
outer iterations and the total443

number of stochastic gradient queries needed to reach an ϵ-suboptimal point is bounded by444

O
((

n+
n

1− ζ

(
bg − 1

n− 1
q+

τ⋆ρ
n

n− bg
n− 1

qmax

))
log

(
1

ϵ

))
.(4.2)445

446

The proof of Theorem 4.8 is provided in Appendix A.1.447

Theorem 4.8 establishes global linear convergence of SAPPHIRE when L is quadratically448

regular and each ℓi is quadratically regular. It substantially generalizes Theorem 17 in [18],449

which only establishes convergence in the special case r(w) = ν/2∥w∥22. In the preconditioned450

This manuscript is for review purposes only.



SAPPHIRE 15

setting, the role of the condition numbers κ and κmax are played by the quadratic regularity451

ratios q and qmax. The convergence rate is controlled by a convex combination of q and qmax,452

which captures the benefits of minibatching. As bg increases from 1 to n, the weight on the453

smaller ratio q approaches unity, while the weight on qmax approaches 0. When q, qmax = O(1),454

which corresponds to the setting when preconditioning helps globally, the total number of455

gradient queries scales as456

O
((

n+
n

1− ζ

)
log

(
1

ϵ

))
.457

Thus, SAPPHIRE’s convergence rate is completely determined by the quality of the precondi-458

tioner, whose impact on the convergence rate comes through the (1− ζ)−1 factor. In the case459

when 1− ζ = Ω(1), SAPPHIRE exhibits the optimal number of queries O(n log(1/ϵ)).460

Remark 4.9. If the regularizer corresponds to a projection onto a closed convex set C, then461

q and qmax in Theorem 4.8 should be replaced by q(C) and qmax(C).462

Theorem 4.8 along with our discussion in Subsection 4.1.1 immediately yields the fol-463

lowing corollary, which provides two concrete settings where SAPPHIRE exhibits an optimal464

convergence rate.465

Corollary 4.10. Under the hypotheses of Theorem 4.8 with the additional assumption that466

1− ζ = Ω(1), the following statements hold:467

1. Suppose L(w) = 1
2n∥Xw − b∥2 + ν∥w∥2

2 and r(w) = µ∥w∥1. Run Algorithm 3.1 with468

U = {0}, η = O(1), m = O(1) inner iterations, and s = O
(
log
(
1
ϵ

))
outer iterations.469

Then Algorithm 3.1 converges to expected loss ϵ with the total number of full gradient470

queries bounded as O(n log(1/ϵ)).471

2. Suppose L(w) = 1
n

∑n
i=1 ℓ(x

T
i w) +

ν∥w∥
2

2
, with ∥xi∥ ≤ 1 for all i ∈ [n] and r(w) = 1C,472

where C is a closed convex set with diam(C) ≤ 2. Run Algorithm 3.1 with U = {0},473

η = O(1), m = O(1) inner iterations, and s = O
(
log
(
1
ϵ

))
outer iterations. Then474

converges to expected loss ϵ with the total number of full gradient queries bounded as475

O(n log(1/ϵ)).476

4.3.2. Convergence for convex ρ-weak quadratically regular L. When L(w) is only477

convex and smooth, a common setting in large-scale machine learning problems, i.e., Lasso,478

SAPPHIRE admits the following ergodic convergence guarantee.479

Theorem 4.11 (SAPPHIRE: Convex ρ-Weak Quadratically Regular Convergence). Instate As-480

sumption 1 and Assumption 2. Fix m > 0. Suppose each ℓi(w) is convex and ρ-weakly quadrat-481

ically regular. Run Algorithm 3.1 with Option 2 and learning rate η = min{ 1
4LP (m+2) ,

1
8(m+2)}.482

Define the sample average as w̄ = 1
Sm

∑S−1
s=0

∑m
k=1 ŵ

(s)
k , then after S outer iterations,483

E [R(w̄)−R(w⋆)] ≤
48(L2

P + 4)(m+ 2)

S
∥w0 − w⋆∥2

P
(0)
0

+
12(LP + 2)

S
(R(w0)−R(w⋆)) .484

Thus, after S = O
(
mL2

P
ϵ

)
outer iterations,485

E [R(w̄)−R(w⋆)] ≤ ϵ

[
∥w0 − w⋆∥2

P
(0)
0

+R(w0)−R(w⋆)

]
.486
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The proof of Theorem 4.11 is provided in Section SM7.487

Theorem 4.11 establishes that SAPPHIRE converges ergodically at anO (1/ϵ) rate, matching488

the rate of gradient descent in the smooth convex case and ProxSVRG without preconditioning489

[42]. Unfortunately, the dependence of S onm in the theorem implies the total gradient queries490

scale as O(
n+m2L2

P
ϵ ), rather than the expected O(n + LP /ϵ). This coupling also appears in491

analysis without preconditioning [42], with a rate ofO(n+m2L
ϵ ), so this issue does not stem from492

SAPPHIRE employing preconditioning. The issue could be avoided by combining SAPPHIRE with493

a black-box reduction such as AdaptReg [3], which is based upon approximately minimizing494

a sequence of strongly convex surrogates. However, we have not found this to be necessary495

in practice. The suboptimal dependence on m arises because Theorem 4.11 assumes the very496

conservative hyperparameter setting: η = O(1/(LPm)). In practice, we run SAPPHIRE with497

η = O(1/LP ), which corresponds to the setting in Theorem 4.8 when L(w) is quadratically498

regular. While this more aggressive hyperparameter setting is not supported by Theorem 4.11,499

it yields excellent empirical performance in practice (section 5). The theory-practice gap in500

the setting of η shows Theorem 4.11 is overly conservative in the requirements it stipulates501

for SAPPHIRE to converge.502

When global convergence rates are pessimistic. Theorem 4.11 can overestimate the time503

needed to solve (rERM) when the regularizer is structured. Consider the Lasso problem504

where L(w) = 1
2n∥Xw − y∥2, X ∈ Rn×p with p > n, and r(w) = λ∥w∥1. When p > n, the505

covariance matrix 1
nX

TX is degenerate, so L(w) is convex but not strongly convex. However,506

the defining property of the Lasso model is that the solution vector w⋆ is sparse. When507

restricted to the support set of the solution w⋆, the covariance matrix is often no longer508

degenerate, so strong convexity holds as long as the iterates stay on the support set, which509

implies a linear convergence rate. Optimization algorithms that identify the low-dimensional510

manifold on which the solution lives within a finite number of iterations and remain there are511

said to possess the manifold identification property [30, 31, 47]. Variance-reduced stochastic512

gradient methods like ProxSVRG, SAGA, and SAPPHIRE possess this property [42]. Hence, for513

problems like the Lasso, SAPPHIRE will exhibit an initial sublinear convergence phase, followed514

by a linearly convergent phase once it has identified the manifold on which the solution lives.515

For some problem instances, this identification occurs rapidly so that the linearly convergent516

phase dominates—in which case the rate predicted by Theorem 4.11 is highly pessimistic.517

The manifold identification property can still be beneficial even when the objective is globally518

strongly convex, as with the elastic net. On the low-dimensional manifold, L(w) can be better519

conditioned than it is globally, so the preconditioner does not have to be as good to ensure520

the preconditioned condition number is close to unity.521

4.4. Local convergence of SAPPHIRE. In this subsection, we establish the local condition522

number free convergence of SAPPHIRE. We focus on the case that each ℓi(w) is ν-strongly523

convex and has an M -Lipschitz Hessian. Local convergence is established within the following524

neighborhood of the optimum w⋆:525

Nε0(w⋆) :=

{
∥w − w⋆∥2∇2L(w⋆)

≤ ν3/2

2M

}
.526
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The key to achieving fast local convergence is that within Nε0(w⋆), the quadratic regularity527

constants are guaranteed to be very close to unity, enabling us to establish the following result.528

Theorem 4.12. Let ε0 ∈ (0, 1/6]. Suppose that each ℓi is ν-strongly convex, and has an529

M -Lipschitz Hessian, and that w0 ∈ Nε0(w⋆). Instate Assumption 1 and Assumption 2530

with ζ = ε0. Run Algorithm 3.1 using Option 2 with U = {0}, m = 10 inner iterations,531

s = 2 log
(
1
ϵ

)
outer iterations, η = 1, and bg = Õ

(
τρ(Nε0(w⋆)) log(

1
δ )
)
. Then, with probability532

at least 1− δ,533

∥ŵ(s) − w⋆∥∇2L(w⋆) ≤ ϵ.534

Hence, the total number of stochastic gradient queries within ϵ distance of the optimum is535

bounded by536

Õ
(
n log

(
1

ϵ

))
.537

The proof of Theorem 4.12 is provided in Section SM8.538

Theorem 4.12 shows that within in Nε0(w⋆), SAPPHIRE enjoys linear convergence inde-539

pendent of the condition number. It provides a generalization of Theorem 19 in [18] to the540

strongly convex composite setting. As in [18], the required gradient batchsize only scales as541

Õ (τν(Nε0(w⋆))), which is never larger than the condition number κ or n and is often signifi-542

cantly smaller, as we shall see shortly below when we specialize to GLMs. Having a gradient543

batchsize requirement independent of κ is crucial in the ill-conditioned setting common in544

large-scale machine learning, where we can easily have κ > n.545

To make Theorem 4.12 more concrete, we present the following corollary, which specializes546

to the case when L(w) corresponds to a GLM.547

Corollary 4.13. Let X ∈ Rn×p, and let Xi ∈ Rp denote the ith row of X. Under the548

hypotheses of Theorem 4.12, suppose that ℓi(w) = ℓ(x⊤i w) +
ν∥w∥2

2 , 1
nλj(X

⊤X) ≤ Cj−2β for549

β > 1, and ∇2L(w⋆) is ridge-leverage incoherent. Then if bg = O
(√

n log
(
1
δ

))
, it holds with550

probability at least 1− δ that only551

Õ
(
n log

(
1

ϵ

))
552

stochastic gradient evaluations are required to ensure the output of Algorithm 3.1 satisfies553

∥ŵ(s) − w⋆∥∇2L(w⋆) ≤ ϵ.554

The proof is provided in Section SM9.555

Corollary 4.13 shows that under a spectral decay condition on X that commonly arises556

in machine learning problems, SAPPHIRE only needs to use a batchsize of Õ (
√
n) to ensure557

a condition number-free convergence with high probability. Thus, we can set bg to be far558

smaller than n, while ensuring a fast convergence rate. This concrete example shows that559

the dependence upon τρ⋆ (Nε0(w⋆)) yields real improvements over results where the batch size560

depends upon κ.561

5. Experiments. In this section, we verify the effectiveness of SAPPHIRE (Algorithm 3.1)562

with experiments on real-world data on a variety of machine learning tasks from LIBSVM [11],563

OpenML [50], and torchvision [34]. Our experiments utilize a diverse collection of datasets,564
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Figure 2. Performance Plot with Small Regularization

which capture a variety of settings: (big-data) n ≫ p, wide-data (p ≫ n), and big and high-565

dimensional (n ∼ p). Moreover, we consider datasets of varying degrees of sparsity, ranging566

from extremely sparse to completely dense. Please see Table SM1 for details.567

We organize the experiments as follows:568

• Performance comparisons (Subsection 5.1): We show the effectiveness of SAPPHIRE569

for solving (rERM). We compare it with existing stochastic first-order optimizers570

Catalyst [32], ProxSVRG [52], and SAGA [13], and a stochastic second-order method571

MB-SVRP [51].572

• Showcase on large-scale applications (Subsection 5.2): We demonstrate SAPPHIRE ex-573

hibits superior performance on real world large-scale learning tasks: click prediction,574

malicious link detection, and phenotype prediction from genetic data.575

• Verification of SAPPHIRE convergence (Subsection 5.3): We provide experiments veri-576

fying that SAPPHIRE satisfies the convergence guarantees presented in Section 4.577

SAPPHIRE is ran using the hyperparameter settings presented in Section 3, and competing578

algorithms are run according to standard recommendations in the literature. See Section SM10579

for a detailed overview. Code to reproduce the experiments may be found at the GitHub580

Repository https://github.com/udellgroup/sapphire.581

5.1. Performance experiments. For the performance experiments, we consider 14 re-582

gression and classification tasks. We train a lasso model for regression tasks and l1-logistic583

regression for classification tasks. The regularization parameter is fixed at 10−2∥XT y∥∞/n,584

corresponding to a small value of regularization that leads to a harder optimization problem.585

As an ablation, we also consider larger values of regularization; see Section SM11 for these586

results. For each task, the optimizer is given 120 seconds to solve the problem. We terminate587

an optimizer early if the norm of the gradient mapping falls below 10−4.588
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Figure 3. Showcase Experiment on Gene Selection

Figure 2 shows that both SAPPHIRE variants outperform other methods on these tasks.589

Notably, SAPPHIRE with NySSN preconditioner finishes all tasks in only 25% of the time590

budget. In contrast, Catalyst requires 80% of the time budget on regression tasks, and no591

other baseline method is able to complete all classification tasks within the time budget.592

5.2. Showcase experiments. First, we evaluate SAPPHIRE on a click-through rate predic-593

tion task using 2014 Avazu-Kaggle competition data. This dataset is large-scale with 107×106594

size and highly sparse with only 0.0001% non-zero entries. We train it using logistic regressions595

with elastic-net regularization. As shown in Figure 1, SAPPHIRE achieves fast convergence in596

less than 60 seconds and yields more compact feature selections compared to baselines.597

Second, we evaluate SAPPHIRE selecting genes to predict phenotypes using UK Biobank598

data. This dataset is large-scale, with size 2.63 · 105 × 103, and dense, with 99.6% non-zero599

entries. We train it using least-squares regression with elastic-net regularization. Figure 3600

shows SAPPHIRE yields the most compact gene selections in 50 seconds and converges fastest.601

5.3. Convergence experiments. In this subsection, we empirically verify the convergence602

theory developed in Section 4. We consider four datasets: covtype, ova lung, rcv1, and603

yearmsd. These four datasets cover the data regimes: n ≫ p, p ≫ n, and n ∼ p. For604

simplicity, we only consider SAPPHIRE with the NySSN preconditioner. For covtype and rcv1,605

we train an l1-logistic regression model with penalty strength µ = 10−1∥XT y∥∞/n. For606

yearmsd, we train a lasso model with the same regularization strength, while for ova lung,607

we train an elastic-net regression model with µ = 10−1∥XT y∥∞/n, ν = 10−1/n. For each608

problem, the reference point used for the optimum R⋆ was found by running SAPPHIRE until609

the norm of the gradient mapping fell below 10−12.610

Figure 4 presents the results. SAPPHIRE exhibits linear convergence on each of the three611
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Figure 4. Verification of convergence of SAPPHIRE. SAPPHIRE exhibits linear convergence on all four
datasets, consistent with the theory and discussion presented in Section 4.

problems, agreeing with the theory developed in Section 4. In the case of covtype, the data612

matrix A is numerically rank deficient, but SAPPHIRE still exhibits linear convergence. The613

rapid convergence despite the lack of strong convexity in the problem is consistent with the614

discussion in Subsection 4.3, where the manifold identification property leads to a much faster615

rate of convergence than the worst-case rate predicted by Theorem 4.11.616

6. Conclusion. We propose SAPPHIRE, an optimization algorithm to accelerate large-scale617

statistical learning for ill-conditioned and non-smooth regularized empirical risk minimization618

problems.619

We provide a rigorous theoretical analysis for the convergence of the SAPPHIRE algorithm,620

demonstrating global and local linear convergence under quadratic regularity and sublinear621

convergence under general convex and weak quadratic regular conditions. Empirical results622

across diverse datasets validate the superior performance of our algorithm in both convergence623

speed and computational efficiency compared to baseline methods like Prox-SVRG and SAGA.624

Therefore, we introduce a robust and efficient framework to address the challenges of ill-625

conditioned, composite, large-scale optimization problems arising in machine learning. By in-626

tegrating variance reduction techniques with preconditioned proximal mappings, the SAPPHIRE627

algorithm not only improves optimization performance but also offers a scalable and versatile628

solution for modern data-driven applications.629

Appendix A. Proofs for global convergence of SAPPHIRE. In this section, we provide630

proofs for all results related to the global convergence of SAPPHIRE.631
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A.1. SAPPHIRE: Global Linear Convergence. The proof is based on a sequence of lem-632

mata. We begin with the following result, which provides a bound for SAPPHIRE after one633

inner iteration.634

Lemma A.1 (Bound for One Inner Iteration). Suppose we are in outer iteration s at inner635

iteration k. Then the following inequality holds636

E
[
∥w(s)

k+1 − w⋆∥2
P

(s)
k

]
+ 2ηE

[
R(w

(s)
k+1)−R(w⋆)

]
637

≤ ∥w(s)
k − w⋆∥2

P
(s)
k

+ 8η2LP [R(w
(s)
k )−R(w⋆) +R(ŵ(s))−R(w⋆)].638

639

The proof is given in Section SM6.640

Lemma A.1 establishes a bound for one inner iteration, which we use to establish the641

following contraction relation for one outer iteration.642

Lemma A.2 (Bound for One Outer Iteration). Suppose we are in outer iteration s. Then643

the output of this outer iteration ŵ(s+1) satisfies644

E[R(ŵ(s+1))]−R(w⋆) ≤
(

1

(1− ζ)γℓη(1− 4LP η)m
+

4LP η(m+ 1)

(1− 4LP η)m

)
[R(ŵ(s))−R(w⋆)].645

646

Proof. Applying Lemma A.1 for k = 0, ...,m− 1, and summing yields647

m−1∑
k=0

E[∥w(s)
k+1 − w⋆∥

P
(s)
k

] + 2η
m−1∑
k=0

E
[
R(w

(s)
k+1)−R(w⋆)

]
648

≤
m−1∑
k=0

∥w(s)
k − w⋆∥2

P
(s)
k

+ 4ηLP

m−1∑
k=0

[R(w
(s)
k )−R(w⋆) +R(ŵ(s))−R(w⋆)]649

650

Taking the total expectation over the inner iterations and rearranging yields651

E[∥w(m)
k − w⋆∥2

P
(s)
k

] + 2ηE[R(w
(s)
k+1)−R(w⋆)] + 2η(1− 4ηLP )

m−1∑
k=1

E[R(w
(s)
k )−R(w⋆)]652

≤ ∥ŵ(s) − w⋆∥2
P

(s)
k

+ 8(m+ 1)η2LP (R(ŵ(s))−R(w⋆)).653
654

Our choice of η implies 2η ≥ 2η(1− 4ηLP ), yielding655

E[∥w(m)
k − w⋆∥2

P
(s)
k

] + 2η(1− 4ηLP )
m∑
k=1

E[R(w
(s)
k )−R(w⋆)]656

≤ ∥ŵ(s) − w⋆∥2
P

(s)
k

+ 8(m+ 1)η2LP (R(ŵ(s))−R(w⋆)).657
658

Rearranging, using the definition of ŵ(s+1) and convexity of R yields659

E
[
R(ŵ(s+1))−R(w⋆)

]
≤ 1

2ηm (1− 4ηLP )
∥ŵ(s) − w⋆∥2

P
(s)
k

660

+
4ηLP (m+ 1)

m(1− 4ηLP )

(
R(ŵ(s))−R(w⋆)

)
.661

662
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Now, by lower quadratic regularity of L and optimality of w⋆, we have663

∥ŵ(s) − w⋆∥2
P

(s)
0

≤ 2

(1− ζ)γℓ
[L(ŵ(s))− L(w⋆)]664

≤ 2

(1− ζ)γℓ
[L(ŵ(s))− L(w⋆) + r(ŵ(s))− r(w⋆)]665

=
2

(1− ζ)γℓ
[R(ŵ(s))−R(w⋆)].666

667

Here, the second inequality follows from the fact that r(ŵ(s))− r(w⋆) ≥ 0 as w⋆ is optimal.668

Combining this with our previous bound, we conclude669

E[R(ŵ(s+1))−R(w⋆)] ≤
(

1

(1− ζ)γℓη(1− 4ηLP )m
+

4ηLP (m+ 1)

(1− 4ηLP )m

)
[R(ŵ(s))−R(w⋆)].670

671

The contraction relation in Lemma A.2 gives us everything we need to prove Theorem 4.8.672

A.2. Proof for Theorem 4.8.673

Proof. Set η = 1
16LP

and m = 100LP
(1−ζ)γℓ

. By Lemma A.2, we perform the recursion and674

obtain675

ER(ŵ(s))−R(w⋆) ≤
(
2

3

)s

(R(ŵ(0))−R(w⋆)).676
677

Therefore, if the number of stages satisfies678

s ≥ 3 log

(
R(ŵ(0))−R(w⋆)

ϵ

)
,679

680

then we achieve681

ER(ŵ(s))−R(w⋆) ≤ ϵ.682683

Observing that each stage requires n + 2mbg component gradient evaluations, we imme-684

diately conclude that the total number stochastic gradient evaluations is given by685

O
([

n+
LP bg

(1− ζ)γℓ

]
log

(
1

ϵ

))
.686

687

The rest of the claim follows by substituting in the expression for LP in Lemma 4.6.688
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eral analysis and improved rates, in International Conference on Machine Learning, PMLR, 2019,743
pp. 5200–5209.744

[24] A. Ilyas, S. M. Park, L. Engstrom, G. Leclerc, and A. Madry, Datamodels: Predicting predictions745
from training data, in Proceedings of the 39th International Conference on Machine Learning, 2022.746

[25] S. J Reddi, S. Sra, B. Poczos, and A. J. Smola, Proximal stochastic methods for nonsmooth non-747

This manuscript is for review purposes only.

http://jmlr.org/papers/v25/23-1187.html


24 J. SUN, Z. FRANGELLA, AND M. UDELL

convex finite-sum optimization, Advances in Neural Information Processing Systems, 29 (2016).748
[26] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction,749

Advances in Neural Information Processing Systems, 26 (2013).750
[27] S. P. Karimireddy, S. U. Stich, and M. Jaggi, Global linear convergence of Newton’s method without751

strong-convexity or Lipschitz gradients, arXiv preprint arXiv:1806.00413, (2018).752
[28] J. M. Kohler and A. Lucchi, Sub-sampled cubic regularization for non-convex optimization, in Inter-753

national Conference on Machine Learning, PMLR, 2017, pp. 1895–1904.754
[29] X. Li, S. Wang, and Z. Zhang, Do subsampled newton methods work for high-dimensional data?, in755

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 4723–4730.756
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SUPPLEMENTARY MATERIALS: SAPPHIRE: Preconditioned Stochastic
Variance Reduction for Faster Large-Scale Statistical Learning∗

Jingruo Sun† , Zachary Frangella∗ , and Madeleine Udell∗

SM1. Computing randomized Nyström approximation. We propose the following algo-
rithm of randomized low-rank approximation to assist the construction of Nyström precondi-
tioner in Section 3.

Algorithm SM1.1 RandNysApprox

Input: Orthogonalized test matrix Ω ∈ Rp×rH , rH = rank(HSH
),

Sketch matrix M = ∇̂2L(w)Ω ∈ Rp×rH

Compute shift ν =
√
p · eps(σmax(M))

Mν = M + νΩ
Cholesky decomposition C = chol(Ω⊤Mν)
Thin SVD [V̂ ,Σ,∼] = svd(MC−1, 0)
Λ̂ = max{0,Σ2 − νI}
return V̂ , Λ̂

Algorithm SM1.1 provides the Hessian approximation and construct the Nyström precon-
ditioner in (3.3) as P = V̂ Λ̂V̂ ⊤. Here the function eps(·) represents the positive distance to
the next largest floating point number of the same precision. All eigenvalues of the approx-
imation are non-negative. We apply it in conjunction with a regularizer to ensure positive
definiteness.

SM2. Stochastic linesearch. Recently, [SM9] developed a version of Armijo line search
for the stochastic proximal gradient method. Inspired by this work, we propose a stochas-
tic version of Armijo line search (SLS) [SM9] to update the learning rate in the composite
optimization problem, as shown in Algorithm SM2.1. However, there are two important dif-
ferences from the method in [SM9]: (i) Algorithm SM2.1 only evaluates the minibatch loss
instead of the full loss and (ii) Algorithm SM2.1 uses the preconditioned norm rather than
the Euclidean norm to determine the stepsize. Algorithm SM2.1 also includes adds a learning
rate ceiling ηmax and a learning rate floor ηmin, this ensures the learning rate never becomes
too large or too small. We recommend using ηmax = 1 and ηmin = 0.05.

Figure SM1 shows the result of applying SLS to the problems in Subsection 4.3 used to
verify the convergence of SAPPHIRE. Figure SM1 shows that SAPPHIRE with SLS exhibits the
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Algorithm SM2.1 Stochastic Line Search (SLS) for Learning Rate

Input: initial learning rate η0, maximum learning rate ηmax, minimum learning rate ηmin,

preconditioner P
(s)
k , gradient batch Sg with size bg,

gradient estimate v
(s)
k , current and previous iterates w

(s)
k+1 and w

(s)
k ,

loss function ℓ, and regularization function r
Initialize: coefficient γ ∈ (0, 1)

if 1
bg

∑
i∈Sg

ℓi(w
(s)
k+1) ≤ 1

bg

∑
i∈Sg

ℓi(w
(s)
k ) + ⟨v(s)k , w

(s)
k+1 −w

(s)
k ⟩+ 1

2ηs
∥w(s)

k+1 −w
(s)
k ∥2

P
(s)
k

then

Update η(s+1) = min
{

1
γ η

(s), ηmax

}
else
Update η(s+1) = max

{
γη(s), ηmin

}
end if
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Figure SM1. Verification of convergence of SAPPHIRE. SAPPHIRE exhibits linear convergence on all four
datasets, consistent with the theory and discussion presented in Section 4.

same linear convergence as in Figure 4, indicating that Algorithm SM2.1 provides a reliable
strategy for setting the learning rate.

SM3. Proof for Lemma 4.6.

Proof. By Proposition 3.16 in [SM3], it holds that

E∥∇̂L(w)− ∇̂L(w⋆)∥2P−1 ≤ 2LP (L(w)− L(w⋆)− ⟨∇L(w⋆), w − w⋆⟩) .

Now, by the optimality of w⋆ = argminw{L(w) + r(w)}, there exists ξ⋆ ∈ ∂r(w⋆) such
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that ∇L(w⋆) + ξ⋆ = 0. Thus, by the convexity of r(w), we deduce

L(w)− L(w⋆)− ⟨∇L(w⋆), w − w⋆⟩ = L(w)− L(w⋆) + ⟨ξ⋆, w − w⋆⟩
≤ L(w)− L(w⋆) + r(w)− r(w⋆)

= R(w)−R(w⋆).

Combining these two results,

E∥∇̂L(w)− ∇̂L(w⋆)∥2P−1 ≤ 2LP [R(w)−R(w⋆)].

SM4. Proof for Lemma 4.7. First, we calculate the expectation of v
(s)
k as

E[v(s)k ] = E[∇̂L(w
(s)
k )]− E[∇̂L(ŵ(s))] +∇L(ŵ(s))

= ∇L(w
(s)
k )−∇L(ŵ(s)) +∇L(ŵ(s))

= ∇L(w
(s)
k ).

Building on Lemma 4.6, we derive

E∥v(s)k −∇L(w
(s)
k )∥2

(P
(s)
k )−1

= E∥∇̂L(w
(s)
k )− ∇̂L(ŵ(s)) +∇L(ŵ(s))−∇L(w

(s)
k )∥2

(P
(s)
k )−1

≤ E∥∇̂L(w
(s)
k )− ∇̂L(ŵ(s))∥2

(P
(s)
k )−1

− ∥∇L(w
(s)
k )−∇L(ŵ(s))∥2

(P
(s)
k )−1

≤ E∥∇̂L(w
(s)
k )− ∇̂L(ŵ(s))∥2

(P
(s)
k )−1

≤ 2E∥∇̂L(w
(s)
k )− ∇̂L(w⋆)∥2

(P
(s)
k )−1

+ 2E∥∇̂L(ŵ(s))− ∇̂L(w⋆)∥2
(P

(s)
k )−1

≤ 4LP [R(w
(s)
k )−R(w⋆) +R(ŵ(s))−R(w⋆)].

Here, the first inequality uses E∥X−EX∥2A ≤ E∥X∥2A, which is valid for any random variable
X ∈ Rd and symmetric positive definite matrix A. The third inequality uses ∥a + b∥2A ≤
2(∥a∥2A + ∥b∥2A). The last inequality applies Lemma 4.6 twice.

SM5. A technical lemma. We need the following technical result to establish global linear
convergence of SAPPHIRE, which extends [SM13, Lemma 3] to the preconditioned setting.

Lemma SM5.1. Let L(w) be quadratically regular and r(w) be convex. For any w ∈ dom(r)
and arbitrary v ∈ Rd, define w̃ = proxPηr(w− ηP−1v), gP = 1

ηP (w− w̃), and ∆ = v −∇L(w),

where 0 < η ≤ 1
(1+ζ)γu

. Then we have for any w′ ∈ Rp,

R(w′) ≥ R(w̃) + ⟨gP , w′ − w⟩+ η

2
∥gP ∥2P−1 +

(1− ζ)γℓ
2

∥w′ − w∥2P + ⟨∆, w̃ − w′⟩.
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Proof. We write the proximal update w̃ explicitly as

w̃ = proxPηr(w − ηP−1v)

= argmin
w′

{
1

2
∥w′ − (w − ηP−1v)∥2P + ηr(w′)

}
.

The associated optimality condition states that there exists a ξ ∈ ∂r(w̃) such that

P
(
w̃ − (w − ηP−1v)

)
+ ηξ = 0.

and we note that gP = P (w − w̃)/η, so we have ξ = gP − v.
Applying quadratic regularity of L, we can lower bound L(w) by

L(w) ≥ L(w̃)− ⟨∇L(w), w̃ − w⟩ − (1 + ζ)γu
2

∥w̃ − w∥2P

≥ L(w̃)− ⟨∇L(w), w̃ − w⟩ − 1

2η
∥w̃ − w∥2P .

By the lower quadratic regularity of L and convexity of r, we have for any w ∈ dom(r)
and w′ ∈ Rd,

R(w′) = L(w′) + r(w′)

≥ L(w) +∇L(w)⊤(w′ − w) +
(1− ζ)γℓ

2
∥w′ − w∥2P +R(w̃) + ξ⊤(w′ − w̃)

≥ L(w̃)−∇L(w)⊤(w̃ − w)− 1

2η
∥w̃ − w∥2P

+∇L(w)⊤(w′ − w) +
(1− ζ)γℓ

2
∥w′ − w∥2P + r(w̃) + ξ⊤(w′ − w̃)

= R(w̃) +∇L(w)⊤(w′ − w̃) + ξ⊤(w′ − w̃)− 1

2η
∥w̃ − w∥2P +

(1− ζ)γℓ
2

∥w′ − w∥2P .

Note that gP = 1
ηP (w − w̃), so we have

1

2η
∥w̃ − w∥2P =

1

2η
· η2⟨P−1gP , P (P−1gP )⟩ =

η

2
⟨gP , P−1gP ⟩ =

η

2
∥gP ∥2P−1 .

Collect all the inner products on the right-hand-side and denote ∆ = v−∇L(w), we have

⟨∇L(w), w′ − w̃⟩+ ⟨ξ, w′ − w̃⟩
= ⟨∇L(w), w′ − w̃⟩+ ⟨gP − v, w′ − w̃⟩
= ⟨gP , w′ − w̃⟩+ ⟨v −∇L(w), w̃ − w′⟩
= ⟨gP , w′ − w + w − w̃⟩+ ⟨∆, w̃ − w′⟩
= ⟨gP , w′ − w⟩+ ⟨gP , ηP−1gP )⟩+ ⟨∆, w̃ − w′⟩
= ⟨gP , w′ − w⟩+ η∥gP ∥2P−1 + ⟨∆, w̃ − w′⟩.



SUPPLEMENTARY MATERIALS: SAPPHIRE SM5

Plugging the derivation of 1
2η∥w̃−w∥2P and ⟨∇L(w), w′− w̃⟩+ ⟨ξ, w′− w̃⟩ back for R(w′),

we obtain

R(w′) ≥ R(w̃) + ⟨∇L(w), w′ − w̃⟩+ ⟨ξ, w′ − w̃⟩ − 1

2η
∥w̃ − w∥2P +

(1− ζ)γℓ
2

∥w′ − w∥2P

≥ R(w̃) + ⟨gP , w′ − w⟩+ η∥gP ∥2P−1 + ⟨∆, w̃ − w′⟩ − η

2
∥gP ∥2P−1 +

(1− ζ)γℓ
2

∥w′ − w∥2P

= R(w̃) + ⟨gP , w′ − w⟩+ η

2
∥gP ∥2P−1 +

(1− ζ)γℓ
2

∥w′ − w∥2P + ⟨∆, w̃ − w′⟩.

SM6. Proof of Lemma A.1.

Proof. Define the stochastic gradient mapping

Ĝ
(s)
k =

1

η

(
w

(s)
k − w

(s)
k+1

)
=

1

η

(
w

(s)
k − proxPηr

(
w

(s)
k − ηP

(s)−1

k v
(s)
k

))
,

so the proximal gradient step can be written as

w
(s)
k+1 = w

(s)
k − ηĜ

(s)
k .

Moreover, we define

p̃
(s)
k :=

(
P

(s)
k

)−1
v
(s)
k , p

(s)
k :=

(
P

(s)
k

)−1
∇F (w

(s)
k ).

Applying the previous relation, we deduce that

∥w(s)
k+1 − w⋆∥2

P
(s)
k

= ∥w(s)
k − ηĜ

(s)
k − w⋆∥2

P
(s)
k

= ∥w(s)
k − w⋆∥2

P
(s)
k

− 2η⟨Ĝ(s)
k , w

(s)
k − w⋆⟩

P
(s)
k

+ η2∥Ĝ(s)
k ∥2

P
(s)
k

.

Note that our assumptions guarantee η < 1
4LP

. Applying Lemma SM5.1 with w =

w
(s)
k , v = v

(s)
k , w̃ = w

(s)
k+1, gP = P

(s)
k Ĝ

(s)
k , w′ = w⋆ and ∆

(s)
k = v

(s)
k −∇L(w

(s)
k ), we have

− ⟨Ĝ(s)
k , w

(s)
k − w⋆⟩

P
(s)
k

+
η

2
∥Ĝ(s)

k ∥2
P

(s)
k

≤ R(w⋆)−R(w
(s)
k+1)−

(1− ζ)γℓ
2

∥w⋆ − w
(s)
k ∥2

P
(s)
k

− ⟨∆(s)
k , w

(s)
k+1 − w⋆⟩.

This property of gradient mapping derives the iteration that

∥w(s)
k+1 − w⋆∥2

P
(s)
k

≤ ∥w(s)
k − w⋆∥2

P
(s)
k

− η(1− ζ)γℓ∥w(s)
k − w⋆∥2

P
(s)
k

− 2η[R(w
(s)
k+1)−R(w⋆)]− 2η⟨∆(s)

k , w
(s)
k+1 − w⋆⟩

≤ ∥w(s)
k − w⋆∥2

P
(s)
k

− 2η[R(w
(s)
k+1)−R(w⋆)]− 2η⟨∆(s)

k , w
(s)
k+1 − w⋆⟩.
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Next, we bound the quantity −2η⟨∆(s)
k , w

(s)
k+1 −w⋆⟩. Let w̄(s)

k+1 denote the result of taking
a preconditioned proximal gradient step with the full gradient as

w̄
(s)
k+1 := proxPηr

(
w

(s)
k − ηp

(s)
k

)
.

Expanding w
(s)
k+1 − w⋆ with w̄

(s)
k+1,

−2η⟨∆(s)
k , w

(s)
k+1 − w⋆⟩ = −2η⟨∆(s)

k , w
(s)
k+1 − w̄

(s)
k+1⟩ − 2η⟨∆(s)

k , w̄
(s)
k+1 − w⋆⟩

≤ 2η∥∆(s)
k ∥

P
(s)−1

k

∥w(s)
k+1 − w̄

(s)
k+1∥P (s)

k

− 2η⟨∆(s)
k , w̄

(s)
k+1 − w⋆⟩

≤ 2η∥∆(s)
k ∥

P
(s)−1

k

∥∥∥(w(s)
k − ηp̃

(s)
k

)
−
(
w

(s)
k − ηp

(s)
k

)∥∥∥
P

(s)
k

− 2η⟨∆(s)
k , w̄

(s)
k+1 − w⋆⟩

= 2η∥∆(s)
k ∥

P
(s)−1

k

∥ηP (s)−1

k ∆
(s)
k ∥

P
(s)
k

− 2η⟨∆(s)
k , w̄

(s)
k+1 − w⋆⟩

= 2η2∥∆(s)
k ∥2

P
(s)−1

k

− 2η⟨∆(s)
k , w̄

(s)
k+1 − w⋆⟩

Here, we use Cauchy-Schwarz inequality for the first inequality and non-expansiveness of
proximal mapping for the second inequality.

Combining with the previous result, we have

∥w(s)
k+1 − w⋆∥2

P
(s)
k

≤ ∥w(s)
k − w⋆∥2

P
(s)
k

− 2η[R(w
(s)
k+1)−R(w⋆)]

+ 2η2∥∆(s)
k ∥2

P
(s)−1

k

− 2η⟨∆(s)
k , w̄

(s)
k+1 − w⋆⟩.

Taking the expectation over v
(s)
k of both sides of the preceding display and applying

Lemma 4.7 obtains

E
[
∥w(s)

k+1 − w⋆∥2
P

(s)
k

]
= ∥w(s)

k − w⋆∥2
P

(s)
k

− 2ηE[R(w
(s)
k+1)−R(w⋆)]

+ 2η2E
[
∥v(s)k −∇L(w

(s)
k )∥2

P
(s)−1

k

]
≤ ∥w(s)

k − w⋆∥2
P

(s)
k

− 2ηE[R(w
(s)
k+1)−R(w⋆)]

+ 8LP η
2[R(w

(s)
k )−R(w⋆) +R(ŵ(s))−R(w⋆)].

Rearranging the last display, we conclude the desired result.

SM7. SAPPHIRE: Sublinear convergence analysis. We now prove Theorem 4.11, which
establishes global sublinear convergence of SAPPHIRE under ρ-weak quadratic regularity, which
covers the setting when L(w) is only smooth and convex.
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Proof. Assume we are in outer iteration s, then summing the bound in Lemma A.1 yields

E[∥w(m)
k − w⋆∥2

P
(s)
k

] + 2ηE[R(w
(s)
k+1)−R(w⋆)] + 2η(1− 4ηLP )

m−1∑
k=1

E[R(w
(s)
k )−R(w⋆)]

≤ ∥ŵ(s) − w⋆∥2
P

(s)
k

+ 8(m+ 1)η2LP (R(ŵ(s))−R(w⋆)).

As η = min{ 1
4LP (m+2) ,

1
8(m+2)} we have that 2η (1− 4ηLP ) ≥ η2. Thus,

E[∥ŵ(s+1) − w⋆∥2
P

(s)
k

] + (2η − η2)E[R(ŵ(s+1))−R(w⋆)] + η2
m∑
k=1

E[R(w
(s)
k )−R(w⋆)]

≤ ∥ŵ(s) − w⋆∥2
P

(s)
k

+ 8(m+ 1)η2LP (R(ŵ(s))−R(w⋆))

≤ ∥ŵ(s) − w⋆∥2
P

(s)
k

+ (2η − η2)(R(ŵ(s))−R(w⋆)),

where in the last inequality, we used that value of η implies that 2η − η2 ≥ 8(m + 1)η2LP .
Thus, the preceding display can be rearranged to yield

η2
m∑
k=1

E[R(w
(s)
k )−R(w⋆)] ≤ ∥ŵ(s) − w⋆∥2

P
(s)
k

+ (2η − η2)(R(ŵ(s))−R(w⋆))

− E[∥ŵ(s+1) − w⋆∥2
P

(s)
k

]− (2η − η2)E[R(ŵ(s+1))−R(w⋆)].

Using convexity of R this becomes

mη2E

[
R
(

1

m

m∑
k=1

w
(s)
k

)
−R(w⋆)

]
≤ ∥ŵ(s) − w⋆∥2

P
(s)
k

− E[∥ŵ(s+1) − w⋆∥2
P

(s)
k

]

+ (2η − η2)
[
R(ŵ(s))−R(w⋆)− E[R(ŵ(s+1))−R(w⋆)]

]
.

Taking the total expectation, summing over all S outer iterations, and using convexity of R
yields

mSη2E

[
R
(

1

Sm

S−1∑
s=0

m∑
k=1

ŵ
(s)
k

)
−R(w⋆)

]
≤ ∥w0 − w⋆∥2

P
(0)
0

+ (2η − η2) (R(w0)−R(w⋆)) .

Define w̄ as 1
Sm

∑S−1
s=0

∑m
k=1 ŵ

(s)
k . Rearranging, we find that

E [R(w̄)−R(w⋆)] ≤
1

η2mS
∥w0 − w⋆∥2

P
(0)
0

+
1

mS

(
1

η
− 1

)
(R(w0)−R(w⋆)) .

Using the identity 1
min{a,b} ≤ 1/a+ 1/b for a, b > 0 yields

E [R(w̄)−R(w⋆)] ≤ (16L2
P+64)(m+2)2

mS ∥w0 − w⋆∥2
P

(0)
0

+ (4LP+8)(m+2)
mS (R(w0)−R(w⋆))

≤ 3(16L2
P+64)(m+2)

S ∥w0 − w⋆∥2
P

(0)
0

+ 3(4LP+8)
S (R(w0)−R(w⋆)) .
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Thus, setting S = O
(
mL2

P
ε

)
yields

E [R(w̄)−R(w⋆)] ≤ ϵ

(
∥w0 − w⋆∥2

P
(0)
0

+ (R(w0)−R(w⋆))

)
.

SM8. SAPPHIRE: Local convergence analysis. In this section, we prove Theorem 4.12,
which shows local condition number-free convergence of SAPPHIRE in the neighborhood

Nε0(w⋆) =

{
w ∈ Rp : ∥w − w⋆∥∇2F (w⋆) ≤

ε0ν
3/2

2M

}
.

The overall proof strategy is similar to that of other approximate Newton methods. Namely,
we first show that the iterates remain withinNε0(w⋆), where the quadratic regularity constants
are close to unity. Once this has been established, we argue that the output of each stage of
Algorithm 3.1 contracts to the optimum at a condition number-free rate.

SM8.1. Preliminaries. We begin by recalling the following technical lemma from [SM3],
which shows the following items hold in Nε0(w⋆): (1) the quadratic regularity constants are
close to unity, (2) the Hessians are uniformly close in the Loewner ordering, (3) taking an
exact Newton step moves the iterate closer to the optimum in the Hessian norm, (4) ∇Fi(w),
∇F (w) are (1 + ε0) Lipschitz in Nε0(w⋆).

Lemma SM8.1. Let w,w′ ∈ Nε0(w⋆), and suppose P is a ε0-spectral approximation con-
structed at some w0 ∈ Nε0(w⋆), then the following items hold.

1.

1

1 + ε0
≤ γlmin

(Nε0(w⋆)) ≤ γumax(Nε0(w⋆)) ≤ (1 + ε0).

2.

(1− ε0)∇2L(w) ⪯ ∇2L(w′) ⪯ (1 + ε0)∇2L(w).

3.

∥w − w⋆ −∇2L(w)−1(∇L(w)−∇L(w⋆)∥∇2L(w) ≤ ε0∥w − w⋆∥∇2L(w).

4.

∥∇Li(w)−∇Li(w⋆)∥∇2Li(w′)−1 ≤ (1 + ε0)∥w − w⋆∥∇2Li(w′), for all i ∈ [n],

∥∇L(w)−∇L(w⋆)∥∇2L(w′)−1 ≤ (1 + ε0)∥w − w⋆∥∇2F (w′).

SM8.2. Controlling the error in the stochastic gradient. Similar to the global conver-
gence analysis, it is essential that the deviation of the variance-reduced gradient from the
exact gradient goes to zero as we approach w⋆. Thus, our analysis begins with the following
lemma, which gives a high probability bound for the preconditioned gradient error. It provides
a local analog of Lemma 4.7.
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Lemma SM8.2. Let βg ∈ (0, 1). If w
(s)
k ∈ Nε0(w⋆) and v

(s)
k is constructed with batchsize

bg = O
(
τν⋆ (Nε0 (w⋆)) log(

1
δ
)

β2
g

)
, then with probability at least 1− δ

∥v(s)k −∇L(w
(s)
k )∥P−1 ≤ βg

(
∥w(s)

k − w⋆∥P + ∥ŵ(s) − w⋆∥P
)
.

Proof. Let Xi = ∇2L(w⋆)
−1/2

(
∇Li(w

(s)
k )−∇Li(ŵ

(s))−
(
∇L(w

(s)
k )−∇L(ŵ(s))

))
. By

definition of Xi,

∇2L(w⋆)
−1/2

(
v
(s)
k −∇L(w

(s)
k )
)
=

1

bg

∑
i∈B

Xi := X.

Observe that ∥X∥ = ∥v(s)k −∇L(w
(s)
k )∥∇2L(w⋆)−1 , and E[X] = 0 by definition of the variance-

reduced gradient. Therefore, we can control ∥v(s)k − ∇L(w
(s)
k )∥∇2L(w⋆)−1 by a concentration

argument similar to [SM3]. We can then convert the result to the (P−1, P )-dual norm pair
by applying Lemma SM8.1.

We shall use Bernstein’s inequality for vectors to bound ∥X∥ with high probability. In
order to apply this variant of Bernstein’s inequality, we must establish bounds on ∥Xi∥ and
E∥Xi∥2. We begin by bounding ∥Xi∥. To this end, observe that,

∥Xi∥2
(1)

≤ 2∥∇Li(w
(s)
k )−∇Li(ŵ

(s))∥2∇2L(w⋆)−1 + 2∥∇L(w
(s)
k )−∇L(ŵ(s))∥2∇2L(w⋆)−1

(2)

≤ 4τ⋆(Nε0(w⋆))
2(1 + ε0)

2∥w(s)
k − ŵ(s)∥2∇2L(w⋆)

≤ 8τ⋆(Nε0(w⋆))
2(1 + ε0)

2
(
∥w(s)

k − w⋆∥2∇2L(w⋆)
+ ∥ŵ(s) − w⋆∥2∇2L(w⋆)

)
.

Here (1) uses ∥x+y∥2 ≤ 2∥x∥2+2∥y∥2, and (2) uses Lemma 3.3 and item 4 of Lemma SM8.1.
Taking the square root on both sides yields

∥Xi∥ ≤ 2
√
2τ⋆(Nε0(w⋆))(1 + ε0)

(
∥w(s)

k − w⋆∥∇2L(w⋆) + ∥ŵ(s) − w⋆∥∇2L(w⋆)

)
.

This establishes the required bound on ∥Xi∥. We now turn to bounding E∥Xi∥2. To begin,
observe that an argument similar to the one in Lemma 4.7 yields

E∥Xi∥2 ≤ 2E∥∇Li(w
(s)
k )−∇Li(w⋆)∥∇2L(w⋆)−1 + 2E∥∇Li(ŵ

(s))−∇Li(w⋆)∥∇2L(w⋆)−1 .
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Again using Lemma 3.3 and Lemma SM8.1, we obtain

2E∥∇Li(w
(s)
k )−∇Li(w⋆)∥∇2L(w⋆)−1 + 2E∥∇Li(ŵ

(s))−∇Li(w⋆)∥∇2L(w⋆)−1

≤ 2τ⋆(Nε0(w⋆))E∥∇Li(w
(s)
k )−∇Li(w⋆)∥∇2Li(w⋆)−1

+ 2τ⋆(Nε0(w⋆))E∥∇Li(ŵ
(s))−∇Li(w⋆)∥∇2Li(w⋆)−1

≤ 2τ⋆(Nε0(w⋆))(1 + ε0)E
(
Li(w

(s)
k )− Li(w⋆)− ⟨∇Li(w⋆), w

(s)
k − w⋆⟩

)
+ 2τ⋆(Nε0(w⋆))(1 + ε0)E

(
Li(ŵ

(s))− Li(w⋆)− ⟨∇Li(w⋆), ŵ
(s) − w⋆⟩

)
= 2τ⋆(Nε0(w⋆))(1 + ε0)

(
L(w

(s)
k )− L(w⋆)− ⟨∇L(w⋆), w

(s)
k − w⋆⟩

)
+ 2τ⋆(Nε0(w⋆))(1 + ε0)

(
L(ŵ(s))− L(w⋆)− ⟨∇L(w⋆), ŵ

(s) − w⋆⟩
)

≤ 2τ⋆(Nε0(w⋆))(1 + ε0)
2
(
∥w(s)

k − w⋆∥∇2L(w⋆) + ∥ŵ(s) − w⋆∥∇2L(w⋆)

)
.

Hence, the scaled gradient residual Xi satisfies

E∥Xi∥2 ≤ 2τ⋆(Nε0(w⋆))(1 + ε0)
2
(
∥w(s)

k − w⋆∥∇2L(w⋆) + ∥ŵ(s) − w⋆∥∇2L(w⋆)

)
.

After giving the bound of ∥Xi∥ and E∥Xi∥2, we can apply Lemma 27 from [SM3] with

bg = O
(

τ⋆(Nε0 (w⋆)) log( 1
δ )

β2
g

)
to reach

∥v(s)k −∇L(w
(s)
k )∥∇2F (w⋆)−1 ≤ βg

4

(
∥w(s)

k − w⋆∥∇2F (w⋆) + ∥ŵ(s) − w⋆∥∇2F (w⋆)

)
.

Converting to preconditioned norms via Lemma SM8.1, this becomes

∥v(s)k −∇L(w
(s)
k )∥P−1 ≤ βg

(
∥w(s)

k − w⋆∥P + ∥ŵ(s) − w⋆∥P
)
.

SM8.3. Establishing a one iteration contraction. With Lemma SM8.2 in hand, we now
establish a contraction relation for iterates in any outer iteration s. This lemma guarantees
the SAPPHIRE iterates remain in Nε0(w⋆), essential for showing condition number-free local
convergence.

Lemma SM8.3. Let w
(s)
k ∈ Nε0(w⋆), and βg ∈ (0, 1). Suppose the gradient batchsize satis-

fies bg = O
(

τν⋆ (Nε0 (w⋆)) log( k+1
δ )

β2
g

)
. Then with probability at least 1− δ

(k+1)2

1. ∥∆(s)
k+1∥∇2F (w⋆) ≤ 3

4∥∆
(s)
k ∥∇2F (w⋆) +

7
48∥∆

(s)
0 ∥∇2F (w⋆)

2. w
(s)
k+1 ∈ Nε0(w⋆).
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Proof. Let ∆
(s)
k+1 = proxPr

(
w

(s)
k − P−1∇L(w

(s)
k )
)
− w⋆. We begin with the following in-

equality,∥∥∥∆(s)
k+1

∥∥∥
P
=
∥∥∥proxPr (wk − P−1v

(s)
k

)
− w⋆

∥∥∥
P

=
∥∥∥proxPr (wk − P−1v

(s)
k

)
− proxPr

(
w⋆ − P−1∇L(w⋆)

)∥∥∥
P

≤
∥∥∥(wk − P−1v

(s)
k

)
−
(
w⋆ − P−1∇L(w⋆)

)∥∥∥
P

=
∥∥∥P (wk − w⋆)− (∇L(wk)−∇L(w⋆)) +∇L(wk)− v

(s)
k

∥∥∥
P−1

≤
∥∥∥P (w

(s)
k − w⋆)− (∇L(w

(s)
k )−∇L(w⋆))

∥∥∥
P−1

+
∥∥∥v(s)k −∇L(w

(s)
k )
∥∥∥
P−1

.

In the second inequality, we used the non-expansiveness of the scaled proximal mapping. The
preceding display consists of two terms. The first term represents the error in the approximate
Taylor expansion

∇L(w
(s)
k )−∇L(w⋆) ≈ P (w

(s)
k − w⋆).

The second term measures the deviation of the stochastic gradient from the exact gradient.
Using Lemma SM8.2, the second term can be bounded as,

βg

(
∥∆(s)

k ∥P + ∥∆(s)
0 ∥P

)
.

Thus, we now turn to bounding the Taylor error term. To this end, observe that the triangle
inequality yields∥∥∥P (w

(s)
k − w⋆)− (∇L(w

(s)
k )−∇L(w⋆))

∥∥∥
P−1

≤
∥∥∥∇2L(w

(s)
k )(w

(s)
k − w⋆)− (∇L(w

(s)
k )−∇L(w⋆))

∥∥∥
P−1

+
∥∥∥(P −∇2L(w

(s)
k ))(w

(s)
k − w⋆)

∥∥∥
P−1

.

The first term in this inequality is the exact Taylor expansion error, while the second term
represents the error in approximating the Hessian. We can bound the first term using
Lemma SM8.1 as follows,∥∥∥∇2L(w

(s)
k )(w

(s)
k − w⋆)− (∇L(w

(s)
k )−∇L(w⋆))

∥∥∥
P−1

(1)

≤ 1√
1− ε0

∥∥∥∇2L(w
(s)
k )(w

(s)
k − w⋆)− (∇L(w

(s)
k )−∇L(w⋆))

∥∥∥
∇2L(w

(s)
k )−1

=
1√

1− ε0
∥w(s)

k − w⋆ −∇2L(w
(s)
k )−1(∇L(w

(s)
k )−∇L(w⋆))∥∇2L(w

(s)
k )

(2)

≤ ε0√
1− ε0

∥∆(s)
k ∥∇2L(w

(s)
k )

(3)

≤ ε0

√
1 + ε0
1− ε0

∥∆(s)
k ∥P

(4)

≤ 2ε0∥∆(s)
k ∥P .
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Here (1) uses item 1 of Lemma SM8.1, (2) uses item 2 of Lemma SM8.1, (3) uses item of
Lemma SM8.1 again, and (4) uses ε0 ≤ 1

6 .
We can also bound the Hessian approximation error term via Lemma SM8.1. Indeed,∥∥∥(P −∇2L(w

(s)
k )
)
(w

(s)
k − w⋆)

∥∥∥
P−1

=
∥∥∥P 1/2(I − P−1/2∇2F (w

(s)
k )P−1/2)P 1/2(w

(s)
k − w⋆)

∥∥∥
P−1

=
∥∥∥(I − P−1/2∇2F (w

(s)
k )P−1/2)P 1/2(w

(s)
k − w⋆)

∥∥∥
≤
∥∥∥I − P−1/2∇2F (w

(s)
k )P−1/2

∥∥∥∥∥∥w(s)
k − w⋆

∥∥∥
P

≤ ε0∥w(s)
k − w⋆∥P = ε0∥∆(s)

k ∥P ,

where the last inequality uses item 2 of Lemma SM8.1. Putting together the two bounds, we
find the approximate Taylor error term satisfies∥∥∥P (w

(s)
k − w⋆)− (∇L(w

(s)
k )−∇L(w⋆))

∥∥∥
P−1

≤ 3ε0∥∆(s)
k ∥P .

Combining the bounds on the approximate Taylor error and the error in the stochastic
gradient, we deduce ∥∥∥∆(s)

k+1

∥∥∥
P
≤ (βg + 3ε0)∥∆(s)

k ∥P + βg∥∆(s)
0 ∥P .

Now, converting norms yields∥∥∥∆(s)
k+1

∥∥∥
∇2L(w⋆)

≤ (1 + ε0)(βg + 3ε0)∥∆(s)
k ∥∇2L(w⋆) + βg(1 + ε0)∥∆(s)

0 ∥∇2L(w⋆)

≤ 3

4
∥∆(s)

k ∥∇2L(w⋆) +
7

48
∥∆(s)

0 ∥∇2L(w⋆).

SM8.4. Showing convergence for one stage. Now that we have established the iterates
produced by SAPPHIRE remain in Nε0(w⋆), we can establish the convergence rate for one stage.

Lemma SM8.4 (One-stage analysis). Let ŵ(s) ∈ Nε0(w⋆). Run Algorithm 3.1 with m = 10
inner iterations and gradient batchsize satisfies bg = O

(
τν⋆ (Nε0(w⋆)) log

(
m+1
δ

))
. Then with

probability at least 1− δ,
1. ŵ(s+1) ∈ N 2

3
ε0
(w⋆).

2. ∥ŵ(s+1) − w⋆∥∇2L(w⋆) ≤ 2
3∥ŵ(s) − w⋆∥∇2L(w⋆).

Proof. As ŵ(s) ∈ Nε0(w⋆), it follows by union bound that the conclusions of Lemma SM8.3

hold for all w
(s)
k , where k ∈ {0, . . . ,m− 1}, with probability at least

1−
m−1∑
k=0

δ

(m+ 1)2
= 1− m

(m+ 1)2
δ ≥ 1− δ.

Consequently, applying Lemma SM8.3,

∥∆(s)
m ∥∇2L(w⋆) ≤

3

4
∥∆(s)

m−1∥∇2L(w⋆) +
7

48
∥∆(s)

0 ∥∇2L(w⋆).
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Now recursively applying the relation in the previous display, and using m = 10 > log(1/15)
log(3/4) ,

we reach

∥∆(s)
m ∥∇2L(w⋆) ≤

(
3

4

)m

∥∆(s)
0 ∥∇2L(w⋆) +

(
m−1∑
k=0

(
3

4

)k
)

7

48
∥∆(s)

0 ∥∇2F (w⋆)

≤ 1

15
∥∆(s)

0 ∥∇2L(w⋆) +
7

48(1− 3
4)
∥∆(s)

0 ∥∇2L(w⋆)

=

(
1

15
+

7

12

)
∥∆(s)

0 ∥∇2L(w⋆) ≤
2

3
∥∆(s)

0 ∥∇2L(w⋆).

Hence ŵ(s+1) = w
(s)
m ∈ N 2

3
ε0
(w⋆).

We now have everything we need to prove Theorem 4.12.

SM8.5. Proof for Theorem 4.12. By Lemma SM8.4, we perform the recursion and obtain

∥ŵ(s) − w⋆∥∇2L(w⋆) ≤
(
2

3

)s

∥ŵ(0) − w⋆∥∇2L(w⋆).

Therefore, with ε0 ∈ (0, 1/6], if the number of stages satisfies

s ≥ 3 log

(
∥ŵ(0) − w⋆∥∇2L(w⋆)

ϵ

)
,

then we achieve

∥ŵ(s) − w⋆∥∇2L(w⋆) ≤ ϵ.

Observing that each stage requires n + 2mbg component gradient evaluations, and that
τρ(Nε0(w⋆)) ≤ n (recall Lemma 3.3), we immediately conclude that the total number stochas-
tic gradient evaluations is given by

O
([

n+ Õ
(
τρ(Nε0(w⋆)) log

(
1

δ

))]
log

(
1

ϵ

))
= O

(
n log

(
1

ϵ

))
.

This completes the proof.

SM9. Proof of Corollary 4.13.

Proof. The hypotheses on the spectrum of 1
nX

TX and the assumption on the ridge-
leverage coherence of ∇2L(w⋆), allow us to apply Lemma 7 and Proposition 15 of [SM3] to
conclude that τρ(Nε0(w⋆)) = O(

√
n)). The corollary now follows by invoking Theorem 4.12.

SM10. Additional experimental details. In this section, we provide additional details for
the experiments performed in section 5.

SM10.1. Algorithmic hyperparameters. In this subsection, we detail how the hyperpa-
rameter settings for the algorithms used in section 5.
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SM10.1.1. Gradient batchsize and Coordinate blocksize. For the performance experi-
ments, we used a gradient batchsize of bg = 256 for datasets with ntr < 105, and bg = 2048
for datasets with ntr ≥ 105. For the showcase experiments, we use a gradient batchsize of
bg = ⌊0.01ntr⌋. For the block coordinate methods, we use a blocksize of ⌊0.01ntr⌋.

SM10.1.2. Learning rate. We set the learning rate for SAGA and SVRG according to the
recommendations in [SM4, SM11]. Note, these papers set the learning rate based on the
expected smoothness constant L [SM5], which accounts for minibatching, and enables the
use of larger learning rate than the classical recommendations in [SM7, SM2], which assume
bg = 1. For Catalyst, we follow the recommendations in [SM8]. The learning rate for MBSVRP
is set as η = min {1/(4L), 1}. This setting was found after considerable experimentation, as
we found the recommended learning in [SM12] often lead to divergence. The learning rate for
the block coordinate methods was set as the reciprocal of the block smoothness constant of
the sampled block, as is standard practice in the literature [SM1, SM10].

SM10.1.3. Other hyperparameter settings. Catalyst and MB-SVRP have additional hy-
perparameters, for these we follow the recommendations in the original papers [SM8, SM12].

SM10.2. Datasets used in the experiments. Table SM1 presents the details for all the
datasets used in the main paper. The condition number κ is computed as κ(XTX) if n > p
and κ(XXT ) if p > n. The largest and smallest eigenvalue are estimated using scipy’s svds
function with the solver set to LOBPCG.

SM10.2.1. Preprocessing details. The rows of all data matrices are scaled to have unit-
norm to ameiliorate ill-conditioning from poorly scaled data. Note, the condition number
estimate in Table SM1 is for the datasets after their rows have been scaled to have unit norm.

For the torchvision datasets, classification is not performed on the original datasets. In-
stead, we a perform a feature transformation by passing through the data matrices through
the first 49 layers of a pre-trained ResNet50 model [SM6] available in torchvision.

SM11. Performance plots for medium strength regularization. In this section, we run
the same performance experiment as in section 5, only with a larger value of the regularization:
µ = 10−1∥XT b∥∞/n. SAPPHIRE still yields the best performance, but its advantage has
narrowed somewhat, as it is now comparable to Catalyst on the Lasso testbed, however it
still maintains its advantage on the Logistic regression testbed. The improved performance of
the first-order methods is unsurprising, as larger regularization leads to a better conditioned
problem, which implies faster convergence of first-order methods.
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Table SM1
Datasets Summary

Dataset Task ntr ntst p κ Non-zeros (%) Source

a9a Classification 32561 16281 122 5.45e+39 100 LIBSVM

abalone Regression 3341 836 8 1.73e+03 100 LIBSVM

avazu Classification 12642186 1719304 999975 1.10e+08 0.0001 LIBSVM

cadata Regression 16512 4128 8 5.89e+05 100 LIBSVM

covtype Classification 464809 116203 54 1.28e+05 100 LIBSVM

e2006 Regression 16087 3308 150358 3.81e+08 0.83 LIBSVM

epsilon Classification 400000 100000 2000 3.21e+10 100 LIBSVM

gisette Classification 6000 1000 5000 3.71e+06 100 LIBSVM

housing Regression 404 102 13 5.95e+07 100 LIBSVM

ledgar Classification 70000 10000 19986 8.62e+05 0.29 LIBSVM

mg Regression 1108 277 6 1.02e+01 100 LIBSVM

mushrooms Classification 6499 1625 112 4.76e+45 100 LIBSVM

phishing Classification 8844 2211 68 2.08e+40 100 LIBSVM

rcv1 Classification 677399 20242 47236 2.53e+05 0.15 LIBSVM

realsim Classification 57847 14462 20958 9.62e+04 0.25 LIBSVM

scotus Classification 6400 1400 126397 2.95e+05 1.03 LIBSVM

space ga Regression 2485 622 6 5.14e+02 100 LIBSVM

url Classification 1916904 479226 3231961 4.29e+07 0.0035 LIBSVM

w8a Classification 39799 9950 300 5.31e+83 100 LIBSVM

yearmsd Regression 463715 51630 90 6.60e+05 100 LIBSVM

ct scan Regression 42800 10700 384 2.15e+40 100 OpenML

dorothea Classification 920 230 100000 4.08e+01 0.91 OpenML

imdb drama Classification 96735 24184 1001 4.26e+02 1.94 OpenML

ova colon Regression 1236 309 10935 5.37e+05 100 OpenML

ova lung Classification 1236 309 10935 5.56e+05 100 OpenML

ovarian Regression 202 51 15154 9.94e+04 100 OpenML

prostate Regression 81 21 12600 9.58e+03 100 OpenML

qsar tid 11 Regression 4593 1149 1024 1.75e+04 6.34 OpenML

ujiindoorloc latitude Regression 16838 4210 525 4.49e+47 100 OpenML

yolanda Regression 320000 80000 100 3.92e+06 100 OpenML

cifar 10 Classification 50000 10000 2048 1.04e+07 100 torchvision

fashion mnist Classification 60000 10000 2048 1.25e+13 100 torchvision

svhn Regression 73257 26032 2048 5.32e+08 100 torchvision

uk biobank Regression 269704 67425 3511 3.84e+16 99.6 UK Biobank
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